

RHRP3060 30A, 600V Hyperfast Diodes

Features

- · Avalanche Energy Rated
- · Planar Construction

Applications

- · Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Ordering Informations

Part Number	Package	Brand
RHRP3060	TO-220AC	RHRP3060

Note: When opdering, use the entire part number.

Description

The RHRP3060 are hypersast diodes with soft recovery characteristics ($_{\rm trr}$ < 40ns). They have half the recovery time of ultrafast diodes and are of silicon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits, thus reducing power loss in the switching transistors.

Formerly developmental type TA49063.

Absolute Maximum Ratings

Symbol	Parameter	RHRP3060	Units
V _{RRM}	Peak Repetitive Reverse Voltage	600	V
V _{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current (T _C = 120°C)	30	Α
I _{FRM}	Repetitive Peak Surge Current (Square Wave, 20KHz)	70	А
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave, 1 Phase, 60Hz)	325	Α
P _D	Maximum Power Dissipation	125	W
E _{AVL}	Avalanche Energy (See Figures 10 and 11)	20	mJ
T _J , T _{STG}	Operating and Storage Temperature	-65 to 175	°C

Electrical Characteristics $T_C = 25$ °C unless otherwise noted

Symbol	Test Conditions	RHRP3060			l luite
		Min.	Тур.	Max.	Units
V _F	I _F = 30A	-	-	2.1	V
	I _F = 30A, T _C = 150°C	-	-	1.7	V
I _R	V _R = 400V	-	-	-	μΑ
	V _R = 600V	-	-	250	μΑ
	V _R = 400V, T _C = 150°C	-	-	-	mA
	V _R = 600V, T _C = 150°C	-	-	1.0	mA
t _{rr}	I _F = 1A, dI _F /dt = 200A/μs	-	-	40	ns
	$I_F = 30A$, $dI_F/dt = 200A/\mu s$	-	-	45	ns
t _a	I _F = 30A, dI _F /dt = 200A/μs	-	22	-	ns
t _b	I _F = 30A, dI _F /dt = 200A/μs	-	18	-	ns
Q _{RR}	I _F = 30A, dI _F /dt = 200A/μs	-	100	-	nC
CJ	V _R = 600V, I _F = 0A	-	85	-	pF
$R_{\theta JC}$		-	-	1.2	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%)

I_R = Instantaneous reverse current.

 $t_{\rm rr}$ = Reverse recovery time (See Figure 9), summation of $t_{\rm a}$ + $t_{\rm b}$.

 t_a = Time to reach peak reverse current (See Figure 9).

 t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

Q_{RR} = Reverse recovery charge.

C_J = Junction Capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = pulse width.

D = Duty cycle.

2

Typical Performance Characteristics

Figure 1. Forward Current vs Forward Voltage

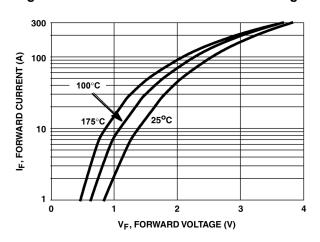


Figure 2. Reverse Currnt vs Reverse Voltage

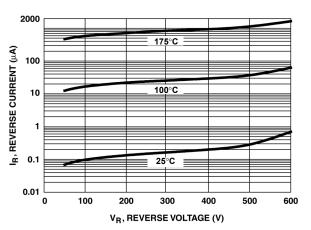


Figure 3. t_{rr}, t_a and t_b Curves vs Forward Current

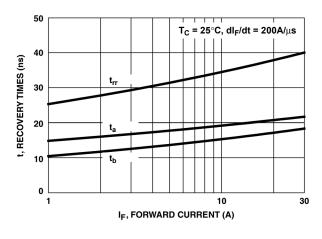


Figure 4. t_{rr}, t_a and t_b Curves vs Forward Current

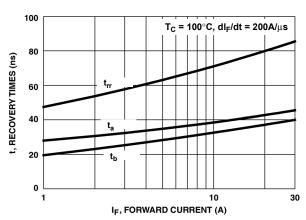


Figure 5. t_{rr} , t_a and t_b Curves vs Forward Current

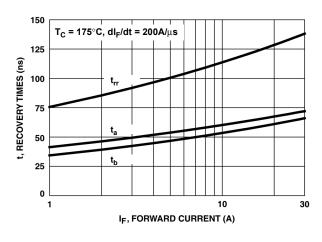
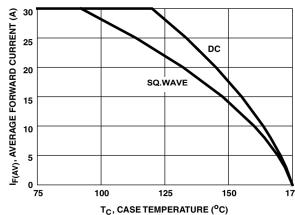
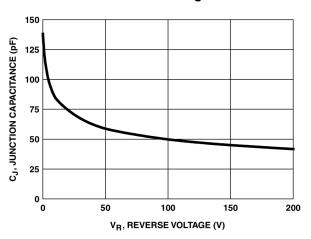




Figure 6. Current Derating Curve

Typical Performance Characteristics (Continued)

Figure 7. Junction Capacitance vs Reverse Voltage

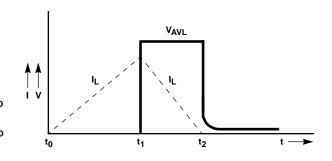
Test Circuit and Waveforms

Figure 8. t_{rr} Test Circuit

Figure 9. t_{rr} Waveforms and Definitions

Figure 10. Avalanche Energy Test Circuit

I = 1A L = 40mH R < 0.1Ω E_{AVL} = 1/2Ll² [V_{R(AVL)}/(V_{R(AVL)} - V_{DD})] Q₁ = IGBT (BV_{CES} > DUT V_{R(AVL)})


L R

CURRENT +0
SENSE V_{DD}

V_{DD}

- ρ

Figure 11. Avalanche Current and Voltage Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS™	I ² C™	MSX™	QT Optoelectronics™	TinyLogic [®]
EnSigna™	i-Lo™	MSXPro™	Quiet Series™	TINYOPTO™
FACT™	ImpliedDisconnect™	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Series™		OCXPro™	RapidConnect™	UHC™
Across the board. Around The Power Franchise® Programmable Active D		OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	μSerDes™ SILENT SWITCHER [®] SMART START™	UltraFET [®] UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I15