

MMBT2222AT

NPN Epitaxial Silicon Transistor

Features

- · General purpose amplifier transistor.
- Ultra-Small Surface Mount Package for all types.
- · General purpose switching & amplification application

September 2008

Absolute Maximum Ratings T_a = 25℃ unless otherwise noted

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage	75	V
V_{CEO}	Collector-Emitter Voltage	40	V
V_{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current	600	mA
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-55 ~ 150	°C

Thermal Characteristics* Ta=25°C unless otherwise noted

Symbol	Parameter	Max	Unit
P _C	Collector Power Dissipation, by R _{0JA}	250	mW
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	500	°C/W

^{*} Minimum land pad.

Electrical Characteristics* Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 10\mu A, I_E = 0$	75		V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 1 \text{mA}, I_B = 0$	40		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 10\mu A, I_C = 0$	6		V
I _{CEX}	Collector Cut-off Current	$V_{CE} = 60V$, $V_{EB(OFF)} = 3V$		10	nA
h _{FE}	DC Current Gain	$V_{CE} = 1V$, $I_{C} = 0.1mA$ $V_{CE} = 1V$, $I_{C} = 1mA$ $V_{CE} = 1V$, $I_{C} = 10mA$ $V_{CE} = 1V$, $I_{C} = 150mA$	35 50 75 100		
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA		0.3 1.0	V V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	0.6	1.2 2.0	V V
f _T	Current Gain Bandwidth Product	$V_{CE} = 20V, I_{C} = 20mA, f = 100MHz$	300		MHz
C _{ob}	Output Capacitance	$V_{CB} = 10V, I_{E} = 0, f = 1MHz$		8	pF
C _{ib}	Input Capacitance	$V_{EB} = 0.5V, I_{C} = 0, f = 1MHz$		30	pF
t _d	Delay Time	$V_{CC} = 30V, I_{C} = 150mA$		10	ns
t _r	Rise Time	I _{B1} =- I _{B2} = 15mA		25	ns
t _s	Storage Time			225	ns
t _f	Fall Time			60	ns

^{*} DC Item are tested by Pulse Test : Pulse Width≤300us, Duty Cycle≤2%

^{* 1.} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Typical Performance Characteristics

Figure 1. DC Current Gain

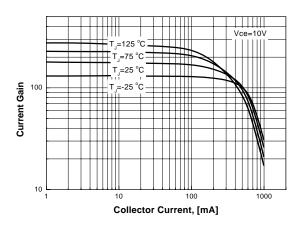


Figure 2. DC Current Gain

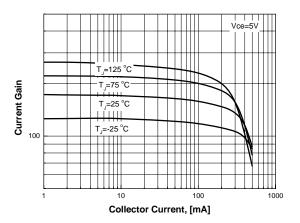


Figure 3. Collector-Emitter Saturation Voltage

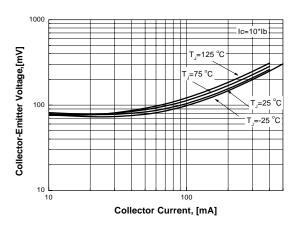


Figure 4. Base-Emitter Saturation voltage

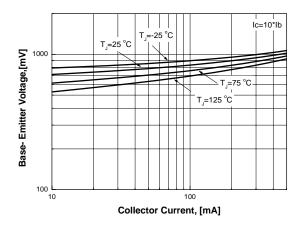


Figure 5. Collector- Base Leakage Current

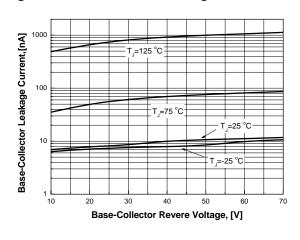
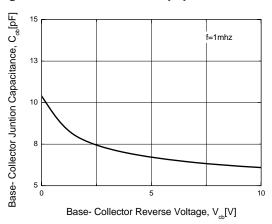
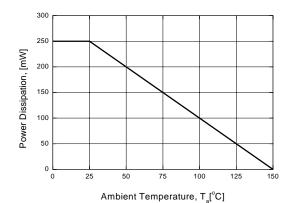
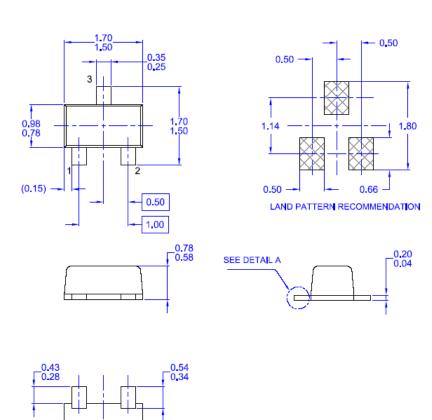




Figure 6. Collector-Base Capapcitance

Typical Performance Characteristics


Figure 7. Power Derating

Package Dimensions

SOT-523F

- Case: SOT-523F
- Case Material(Molded Plastic): KTMC1060SC
- UL Flammability classfication rating: "V0"
- Moisture Sensitivity level per JESD22-A1113B: MSL 1
- Lead terminals solderable per MIL-STD7502026 /JESD22A121
- Lead Free Plating : Pure Tin(Matte)

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®] Green FPS™ Power247® SuperSOT™-8 POWEREDGE® Build it Now™ Green FPS™ e-Series™ SvncFET™ CorePLUS™ GTO™ Power-SPM™ The Power Franchise® $\mathsf{PowerTrench}^{\mathbb{R}}$ i-Lo™ CROSSVOLT™ power CTL^{TM} IntelliMAX™ Programmable Active Droop™ ISOPLANAR™ OFFT® TinyBoost™ Current Transfer Logic™ QS^{TM} EcoSPARK® MegaBuck™ TinyBuck™ MICROCOUPLER™ QT Optoelectronics™ TinyLogic[®] $\bar{\mathsf{F}}$ airchild $^{\mathbb{R}}$ TINYOPTO™ MicroFET™ Quiet Series™ Fairchild Semiconductor® RapidConfigure™ TinyPower™ MicroPak™ FACT Quiet Series™ MillerDrive™ SMART START™ TinyPWM™ FACT® Motion-SPM™ SPM[®] TinyWire™ $\mathsf{FAST}^{\mathbb{R}}$ OPTOLOGIC® STEALTH™ µSerDes™ OPTOPLANAR® UHC® FastvCore™ SuperFET™ **FPS™** SuperSOT™-3 UniFET™ FRFFT® PDP-SPM™ VCX™ SuperSOT™-6

Power220®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Global Power ResourceSM

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Not In Production

A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

This datasheet contains specifications on a product that has been discontin-

ued by Fairchild semiconductor. The datasheet is printed for reference infor-

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status Definition This datasheet contains the design specifications for product development. Advance Information Formative or In Design Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be pub-Preliminary First Production lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves No Identification Needed **Full Production** the right to make changes at any time without notice to improve design.

Obsolete

mation only.