

MMBFJ110 N-Channel Switch

April 2011

Features

- This device is designed for digital switching applications where very low on resistance is mandatory.
- Sourced from process 58.

Absolute Maximum Ratings* T_A=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	-25	V
I _{GF}	Forward Gate Current	10	mA
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-55 to +150	°C

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. **NOTES:**

Thermal Characteristics* T_A=25°C unless otherwise noted

Symbol	Parameter	Value	Units
P _D	Total Device Dissipation	460	mW
	Derate above 25°C	3.68	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	270	°C/W

^{*} Device mounted on a minimum pad.

Electrical Characteristics T_A=25°C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Max.	Units			
Off Charact	Off Characteristics							
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -10\mu A, V_{DS} = 0$	-25		V			
I _{GSS}	Gate Reverse Current	V _{GS} = -15V, V _{DS} = 0 V _{GS} = -15V, V _{DS} = 0, T _A = 100°C		-3.0 -200	nA nA			
V _{GS} (off)	Gate-Source Cutoff Voltage	$V_{DS} = 15V, I_{D} = 10nA$	-0.5	-4.0	V			
On Characteristics								
I _{DSS}	Zero-Gate Voltage Drain Current*	$V_{DS} = 15V, I_{GS} = 0$	10		mA			
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \le 0.1 V, V_{GS} = 0$		18	Ω			
Small Signal Characteristics								
C _{dg} (on) C _{sg} (off)	Drain-Gate &Source-Gate On Capacitance	$V_{DS} = 0$, $V_{GS} = 0$, $f = 1.0MHz$		85	pF			
C _{dg} (off)	Drain-Gate Off Capacitance	$V_{DS} = 0$, $V_{GS} = -10V$, $f = 1.0MHz$		15	pF			
C _{sg} (off)	Source-Gate Off Capacitance	$V_{DS} = 0$, $V_{GS} = -10V$, $f = 1.0MHz$		15	pF			

^{*} Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2.0%

¹⁾ These ratings are based on a maximum junction temperature of 150°C.

²⁾ These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Typical Performance Characteristics

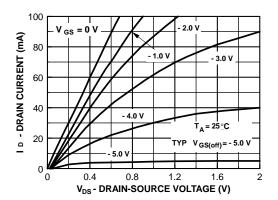
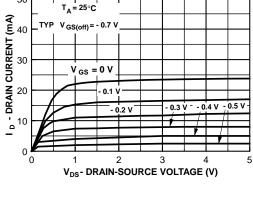



Figure 1. Common Drain-Source

50

Figure 2. Common Drain-Source

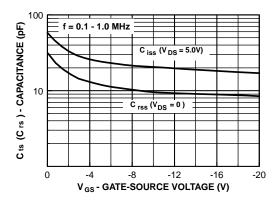
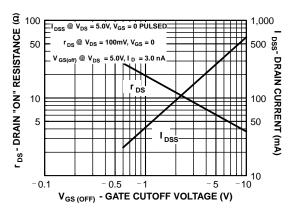



Figure 3. Capacitance vs Gate-Source Voltage

Figure 4. Parameter Interactions

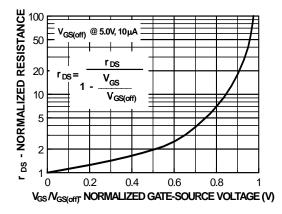


Figure 5. Normalized Drain Resistance vs Bias Voltage

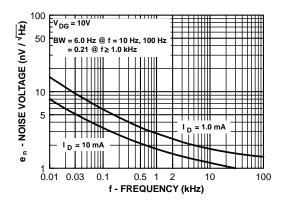


Figure 6. Noise Voltage vs Frequency

Typical Performance Characteristics (Continued)

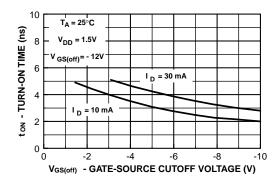


Figure 7. Switching Turn-On Time vs Gate-Source Cutoff Voltage

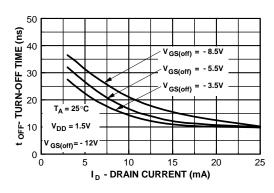


Figure 8. Switching Turn-On Time vs Drain Current

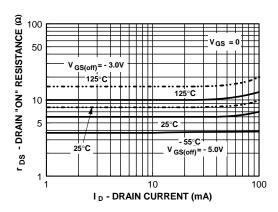


Figure 9. On Resistance vs Drain Current

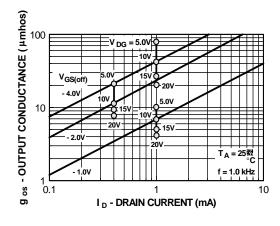


Figure 10. Output Conductance vs Drain Current

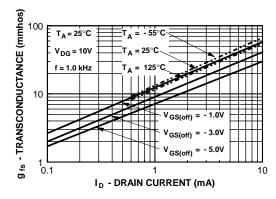


Figure 11. Transconductance vs Drain Current

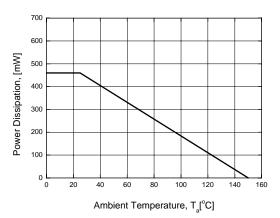
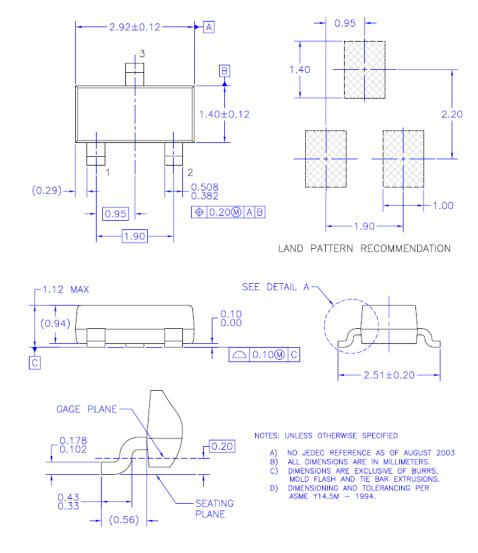



Figure 12. Power Dissipation vs Ambient Temperature

Physical Dimensions

SuperSOT-3

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFSTM Auto-SPM™ FRFET® AX-CAP™*

Green FPS™ Build it Now™ Green FPS™ e-Series™ CorePLUS™

Gmax™

GTO™

IntelliMAX™

MegaBuck™

ISOPLANAR™

MICROCOUPLER™

CorePOWER™ CROSSVOLT™ CTL™

Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™

FAST® FastvCore™ FETBench™ FlashWriter®*

FPS™

Power-SPM™ PowerTrench® Global Power ResourceSM PowerXS™

Programmable Active Droop™

QFET QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ MicroFFT™ SmartMax™ MicroPak™ SMART START™ MicroPak2™ SPM® MillerDrive™ STEALTH™ MotionMax™ SuperFET® Motion-SPM™ SuperSOT™-3 mWSaver™ SuperSOT™-6 OptoHiT™ SuperSOT™-8

OPTOLOGIC® SupreMOS® OPTOPLANAR® . SyncFET™ Sync-Lock™ SYSTEM ®* PDP SPM™

The Power Franchise®

The Right Technology for Your Success™

p, bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™

μSerDes™ LIHC Ultra FRFET™ UniFET™ VCX^{TM} VisualMax™ XSTM

TRUECURRENT®*

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS, THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild . Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Term

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 153