

January 2012

Motion-SPM™

FPAM50LH60 Smart Power Module for 2-phase Interleaved PFC

Features

- · Single phase rectifier for AC input
- · 2-phase interleaved PFC
- · Control IC for gate driving and protection
- · Built-in NTC thermistor for monitoring over-temperature
- · Low thermal resistance due to DBC substrate
- Isolation lating of 2500V_{rms}/min
- UL Certified No.E209024

Applications

System air conditioner

General Description

FPAM50LH60 is an advanced smart power module of 2-phase interleaved PFC(Power Factor Correction). It combines optimized drive circuit with low-loss IGBTs and using DBC which has low thermal resistance. System reliability is further enhanced by the integrated under-voltage lock-out, over-current protection, and built-in NTC thermistor for monitoring over-temperature.

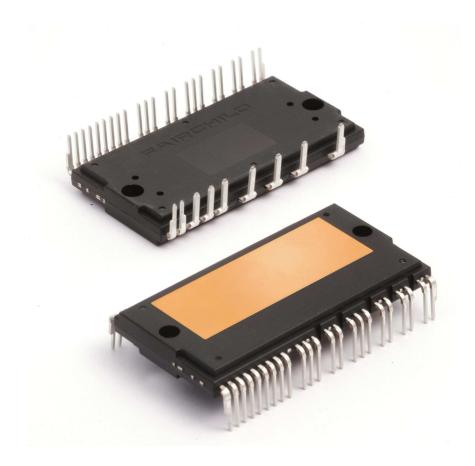


Figure 1.

Integrated Drive, Protection and System Control Functions

- For IGBTs: Gate drive circuit, Over Current protection(SC), Control supply circuit under-voltage(UV) protection
- · Fault signal: Corresponding to SC and UV fault
- · Built-in thermistor: Over-temperature monitoring
- · Input interface: 3.3/5V CMOS/LSTTL compatible

Pin Configuration

Top View

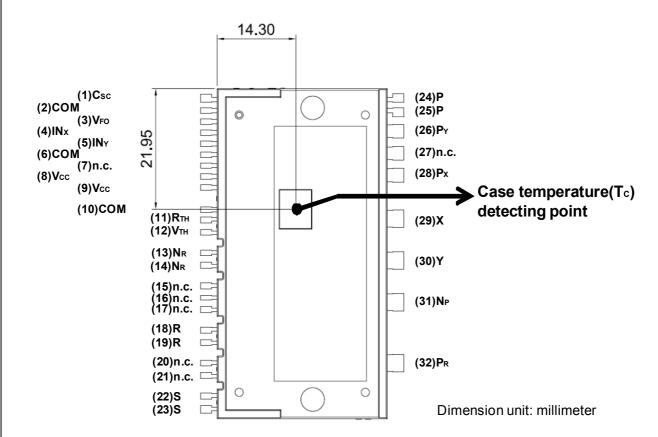


Figure 2.

Pin Descriptions

Pin Number	Pin Name	Pin Description		
1	C _{SC}	Signal input for over current detection		
2,6,10	СОМ	ommon supply ground		
3	V _{FO}	Fault out		
4	IN _X	PWM input for X IGBT drive		
5	IN_Y	PWM input for Y IGBT drive		
7	n.c.			
8,9	V _{CC}	Common supply voltage of IC for IGBT drive		
11	R _{TH}	Thermister		
12	V_{TH}	Thermister		
13,14	N _R	Negative DC-link of Rectifier Diode		
15,16,17	n.c.			
18,19	R	AC input for R phase		
20,21	n.c.			
22,23	S	AC input for S phase		
24,25	Р	Output of Diode		
26	P_{Y}	Input of Diode		
27	n.c.			
28	P _X	Input of Diode		
29	Х	Output of X phase IGBT		
30	Y	Output of Y phase IGBT		
31	N _P	Negative DC-link of IGBT		
32	P_{R}	Positive DC-link of Rectifier Diode		

Internal Equivalent Circuit

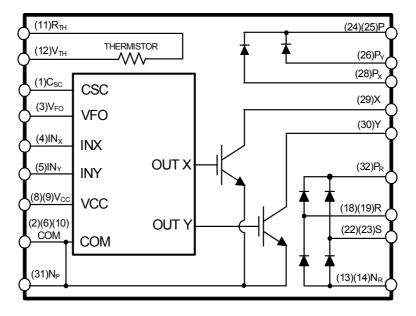


Figure 3. Internal Block Diagram

Absolute Maximum Ratings (T_J = 25°C, Unless Otherwise Specified)

Converter Part

Symbol	Parameter	Conditions	Rating	Units
V _i	Input Supply Voltage	Applied between R-S	264	V _{rms}
V_{PN}	Output Voltage	Applied between X-N _P ,Y-N _P , P-P _X , P-P _Y	450	V
V _{PN(Surge)}	Output Supply Voltage (Surge)	Applied between X-N _P ,Y-N _P , P-P _X , P-P _Y	500	V
V _{CES}	Collector-emitter Voltage	Breakdown Voltage between X-N _P ,Y-N _P	600	V
V _{RRM}	Repetitive Peak Reverse Voltage of FRD	Breakdown Voltage between P-P _X , P-P _Y	600	V
V _{RRMR}	Repetitive Peak Reverse Voltage of Rectifier	Breakdown Voltage between P_R -R, P_R -S, R -N $_R$, S-N $_R$	900	V
*I _F	FRD Forward Current	T _C = 25°C, T _J < 125°C	50	Α
*I _{FSM}	Peak Surge Current of FRD	Non-repetitive, 60Hz single half-sine wave	500	Α
*I _{FR}	Rectified Forward Current	T _C = 25°C, T _J < 125°C	50	Α
*I _{FSMR}	Peak Surge Current of Rectifier	Non-repetitive, 60Hz single half-sine wave	500	Α
±*I _C	Each IGBT Collector Current	T _C = 25°C, T _J < 125°C	50	Α
± *I _{CP}	Each IGBT Collector Current(Peak)	T _C = 25°C, T _J < 125°C, Under 1ms pulse width	100	Α
*P _C	Collector Dissipation	T _C =25°C per single IGBT	135	W
T _J	Operating Junction Temperature	(Note 1)	-40~125	°C

Note

Control Part

Symbol	Parameter	Conditions	Rating	Units
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	20	V
V _{IN}	Input Signal Voltage	Applied between IN _X , IN _Y - COM	-0.3 ~ V _{CC} +0.3	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3 ~ V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	1	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3 ~ V _{CC} +0.3	V

Total System

Symbol	Parameter	Conditions	Rating	Units
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60Hz, Sinusoidal, AC 1 minute, Connection Pins to heat sink plate	2500	V_{rms}

Thermal Resistance

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
R _{th(j-c)Q}		Each IGBT under Operating Condition	-	-	0.74	°C/W
R _{th(j-c)D}	Resistance	Each Diode under Operating Condition	-	-	1.13	°C/W
R _{th(j-c)R}		Each Rectifier under Operating Condition	-	-	0.74	°C/W

^{1.} The maximum junction temperature rating of the power chips integrated within the SPM is 125° C.

^{2.} Marking " * " is calculation value or design factor.

$\textbf{Electrical Characteristics} \,\, (\textbf{T}_{\textbf{J}} = 25^{\circ}\textbf{C}, \, \textbf{Unless Otherwise Specified})$

Converter Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{CE(SAT)}	IGBT Saturation Voltage	V _{CC} = 15V, V _{IN} = 5V, I _C = 50A	-	1.7	2.2	V
V _{FF}	FRD Forward Voltage	I _F = 50A	-	1.9	2.4	V
V _{FR}	Rectifier Forward Voltage	I _{FR} = 50A	-	1.13	1.35	V
I _{RR}	Switching Characteristic	V _{PN} = 400V, V _{CC} = 15V, I _C = 25A,	-	27	-	Α
t _{RR}		V_{IN} = 0V \leftrightarrow 5V, Inductive Load (Note 3), per single IGBT	-	45	-	ns
t _{ON}			-	772	-	ns
t _{OFF}			-	1117	-	ns
t _{C(ON)}			-	110	-	ns
t _{C(OFF)}			-	125	-	ns
I _{CES}	Collector-Emitter Leakage Current	V _{CES} =600V	-	-	250	μА

Note

Control Part

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{QCC}	Quiescent V _{CC} Supply Current	V_{CC} = 15V, IN _X , IN _Y - COM = 0V, Supply current between V_{CC} and COM	-	-	2.65	mA
I _{PCC}	Operating V _{CC} Supply Current	V_{CC} = 15V, f_{PWM} = 20kHz, duty=50%, applied to one PWM signal input per single IGBT, Supply current between V_{CC} and COM	-	-	7.0	mA
V _{FOH}	Fault Output Voltage	V_{SC} = 0V, V_{FO} Circuit: 10k Ω to 5V Pull-up	4.5	-	-	V
V _{FOL}		V_{SC} = 1V, V_{FO} Circuit: 10k Ω to 5V Pull-up	-	-	0.5	V
V _{SC(Ref)}	Over-Current Protection Trip Level Voltage of CSC pin	V _{CC} = 15V	0.45	0.5	0.55	V
UV _{CCD}	Supply Circuit Under-	Detection Level	10.5	-	13.0	V
UV _{CCR}	Voltage Protection	Reset Level	11.0	-	13.5	V
t _{FOD}	Fault-out Pulse Width		30	-	-	μS
V _{IN(ON)}	ON Threshold Voltage	Applied between IN _X , IN _Y - COM	2.6	-	-	V
V _{IN(OFF)}	OFF Threshold Voltage	Applied between IN _X , IN _Y - COM	-	-	0.8	V
R _{TH}	Resistance of Thermistor	@ T _{TH} = 25°C (Figure 5)(Note 4)	-	47	-	kΩ
		@ T _{TH} = 100°C (Figure 5)(Note 4)	-	2.9	-	kΩ

Note

^{3.} t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.

^{4.} T_{TH} is the temperature of thermister itself. To know case temperature (T_C), please make the experiment considering your application.

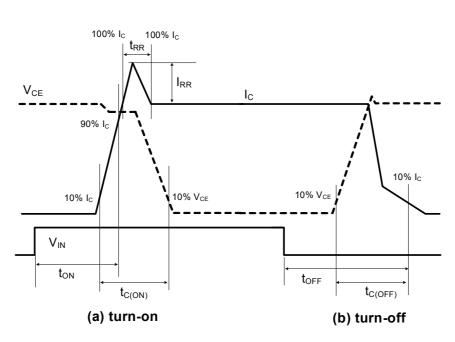


Figure 4. Switching Time Definition

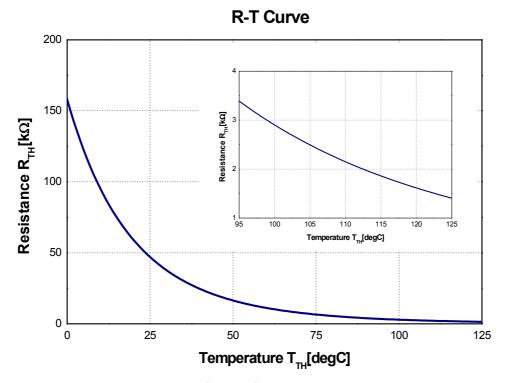


Figure 5. R-T Curve of The Built-in Thermistor

Recommended Operating Conditions (T_J = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Conditions	Value			Units
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Ullits
V _i	Input Supply Voltage	Applied between R - S	187	-	253	V _{rms}
I _i	Input Current	T_C <90°C, V_i =220V, V_O =360V, f_{PWM} =20kHz per each IGBT	-	-	35	A _{rms}
V _{PN}	Supply Voltage	Applied between X-N _P , Y-N _P , P-P _X , P-P _Y	-	-	400	V
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	13.5	15	16.5	V
dV _{CC} /dt	Supply Variation		-1	-	1	V/μs
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	-	-	1	mA
f _{PWM}	PWM Input Frequency	-40°C <t<sub>J<125°C per single IGBT</t<sub>	-	20	-	kHz

Mechanical Characteristics and Ratings

Parameter		onditions	Limits			Units
Parameter	C	onanions	Min.	Тур.	Max.	Ullits
Mounting Torque	Mounting Screw: M4	Recommended 0.98N•m	0.78	0.98	1.17	N•m
		Recommended 10kg•cm	8	10	12	kg•cm
Device Flatness	Refer to Figure 6	<u> </u>	0	-	+150	μm
Weight			-	32	-	g

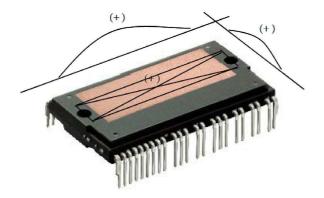
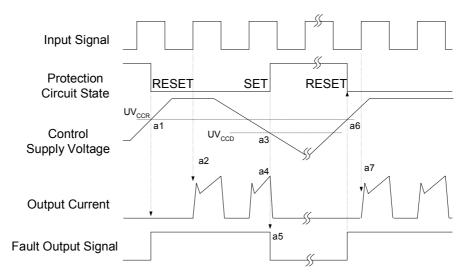
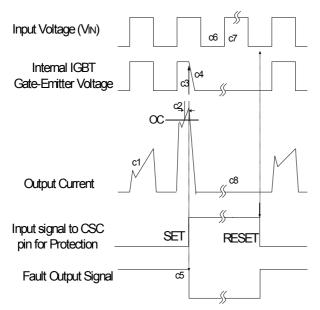



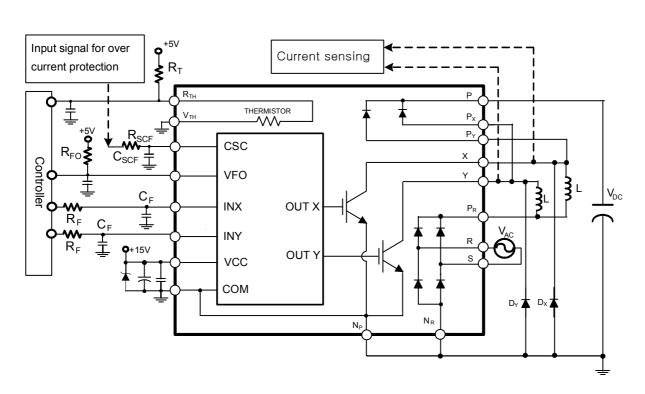
Figure 6. Flatness Measurement Position

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FPAM50LH60	FPAM50LH60	SPM32-EA	-	-	8

Time Charts of Protective Function

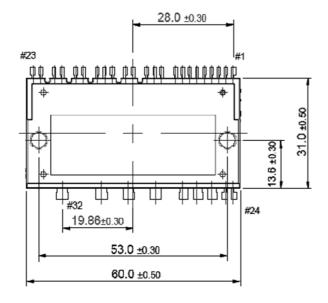
- a1 : Control supply voltage rises: After the voltage rises UV_{CCR}, the circuits start to operate when the next input is applied.
- a2: Normal operation: IGBT ON and carrying current.
- a3 : Under voltage detection (UV_{CCD}).
- a4: IGBT OFF in spite of control input condition.
- a5 : Fault output operation starts.
- a6: Under voltage reset (UV_{CCR}).
- a7: Normal operation: IGBT ON and carrying current.


Figure 7. Under-Voltage Protection

(with the external over current detection circuit)

- c1: Normal operation: IGBT ON and carrying current.
- c2 : Over current detection (OC trigger).
- c3: Hard IGBT gate interrupt.
- c4: IGBT turns OFF.
- c5 : Fault output timer operation starts.
- c6 : Input "L" : IGBT OFF state.
- c7 : Input "H": IGBT ON state, but during the active period of
- fault output the IGBT doesn't turn ON.
- c8: IGBT OFF state

Figure 8. Over Current Protection


Note

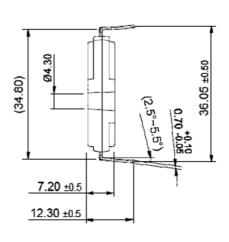

- 1. To avoid malfunction, the wiring of each input should be as short as possible. (less than $2\sim3cm$)
- 2. V_{FO} output is open drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes IFO up to 1mA.
- 3. Input signal is High-Active type. There is a $5k\Omega$ resistor inside the IC to pull down each input signal line to GND. RC coupling circuits is recommanded for the prevention of input signal oscillation. $R_F C_F$ constant should be selected in the range $50\sim150$ ns. (Recommended $R_F = 100~\Omega$, $C_F = 1$ nF)
- 4. To prevent error of the protection function, the wiring related with R_{SCF} and C_{SCF} should be as short as possible.
- 5. In the over current protection circuit, please select the R_{SCF} , C_{SCF} time constant in the range 1.5~2 μs
- 6. Each capacitors should be mounted as close to the SPM pins as possible.
- 7. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and the relays.
- 8. Internal NTC thermistor can be used for monitoring of the case temperature and protecting the device from the overheating operation. Select an appropriate resistor R_T according to the application.
- 9. It is recommended that anti-parallel $\mathsf{diode}(\mathsf{D}_\mathsf{X}\ , \mathsf{D}_\mathsf{Y})$ be connected with each IGBT.

Figure 9. Typical Application Circuit

Detailed Package Outline Drawings

Dimension unit: millimeter

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® AccuPower™ AX-CAP™ Global Power ResourceSM GreenBridge™ BitSiC™ Build it Now™ Green FPS™ CorePLUS™ Green FPS™ e-Series™

CorePOWER™ Gmax™ GTO™ $CROSSVOLT^{\text{\tiny TM}}$ IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder **DEUXPEED**[©] and Better™ Dual Cool™

EcoSPARK® MegaBuck™ MICROCOUPLER™ EfficientMax™ MicroFET™ **ESBC™ F**® MicroPak™

MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ Motion-SPM™ mWSaver™ OptoHiT™

FACT FAST® FastvCore™ OPTOLOGIC® FFTBench™ **OPTOPLANAR®** FlashWriter®* **FPSTM**

PowerTrench® PowerXS™

QFĔT[®]

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM SGENERAL®* The Power Franchise®

pjuwer* franchi TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XSTM

սSerDes™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I61