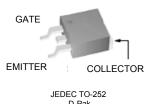


April 2012

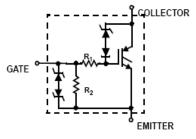
FGD3040G2_F085

EcoSPARK®2 300mJ, 400V, N-Channel Ignition IGBT

Features


- SCIS Energy = 300mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101
- RoHS Compliant

Applications


- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

Package

Symbol

Device Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1mA)	400	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10mA)	28	V
E _{SCIS25}	Self Clamping Inductive Switching Energy (Note 1)	300	mJ
	Self Clamping Inductive Switching Energy (Note 2)	170	mJ
I _{C25}	Collector Current Continuous, at V _{GE} = 5.0V, T _C = 25°C	41	Α
I _{C110}	Collector Current Continuous, at V _{GE} = 5.0V, T _C = 110°C	25.6	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
D	Power Dissipation Total, at T _C = 25°C	150	W
P_D	Power Dissipation Derating, for T _C > 25°C	1	W/oC
T _J	, , , , , , , , , , , , , , , , , , , ,		°C
T _{STG}			°C
T _L	Max. Lead Temp. for Soldering (Leads at 1.6mm from case for 10s)		°C
T _{PKG}	Reflow soldering according to JESD020C		°C
ESD	HBM-Electrostatic Discharge Voltage at100pF, 1500Ω	4	kV
LSD	CDM-Electrostatic Discharge Voltage at 1Ω	2	kV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGD3040G2	FGD3040G2_F085	TO252	330mm	16mm	2500 units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

	Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
--	--------	-----------	-----------------	-----	-----	-----	-------

Off State Characteristics

BV _{CER}	$ \begin{array}{c} I_{CE} = 2\text{mA}, \ V_{GE} = 0, \\ \text{Collector to Emitter Breakdown Voltage} \\ R_{GE} = 1\text{K}\Omega, \\ T_{J} = -40 \text{ to } 150^{\circ}\text{C} \end{array} $		370	400	430	٧	
BV _{CES}	$T_{\rm J} = -40 \text{ to } 150^{\rm o}\text{C}$		390	420	450	٧	
BV _{ECS}	Emitter to Collector Breakdown Voltage	I_{CE} = -20mA, V_{GE} = 0V, T_{J} = 25°C		28	-	1	V
BV_{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2mA$		±12	±14	-	V
1	Collector to Emitter Leakage Current	V_{CE} = 250V, R_{GE} = 1K Ω	$T_J = 25^{\circ}C$	1	1	25	μΑ
I _{CER}	Collector to Emitter Leakage Current		$T_{\rm J} = 150^{\rm o}{\rm C}$	-	-	1	mA
	Emitter to Collector Leakage Current	V _{EC} = 24V,	$T_J = 25^{\circ}C$	-	-	1	m۸
I _{ECS}	Emilier to Collector Leakage Current		$T_{J} = 150^{\circ}C$	-	-	40	mA
R ₁	Series Gate Resistance			-	120	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω

On State Characteristics

$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	$I_{CE} = 6A, V_{GE} = 4V,$	$T_J = 25^{\circ}C$	•	1.15	1.25	V
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	I_{CE} = 10A, V_{GE} = 4.5V,	$T_J = 150^{\circ}C$	-	1.35	1.50	V
$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	$I_{CE} = 15A, V_{GE} = 4.5V,$	$T_J = 150^{\circ}C$	-	1.68	1.85	V
E _{SCIS}	ISelf Clambed Inductive Switching	L = 3.0 mHy,RG = 1KΩ, VGE = 5V, (Note 1)	TJ = 25°C	-	-	300	mJ

Electrical Characteristics T_A = 25°C unless otherwise noted

Parameter

Dynam	ic Characteristics						
$Q_{G(ON)}$	Gate Charge	I _{CE} = 10A, V _{CE} = 12V, V _{GE} = 5V		-	21	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1mA, V _{CE} = V _{GE}	$T_{J} = 25^{\circ}C$	1.3	1.7	2.2	V
VGE(TH)	Gate to Emitter Threshold Voltage	ICE - IIIA, VCE - VGE,	$T_{J} = 150^{\circ}C$	0.75	1.2	1.8	\ \
V_{GEP}	Gate to Emitter Plateau Voltage	$V_{CE} = 12V$, $I_{CE} = 10A$		-	2.8	-	V

Test Conditions

Min

Max Units

Switching Characteristics

t _{d(ON)R}	Current Turn-On Delay Time-Resistive	OL · L	-	0.9	4	μS
t_{rR}		$V_{GE} = 5V$, $R_G = 1K\Omega$ $T_J = 25^{\circ}C$,	1	1.9	7	μS
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	OL ,	1	4.8	15	μS
t _{fL}	Current Fall Time-Inductive	$V_{GE} = 5V, R_{G} = 1K\Omega$ $I_{CE} = 6.5A, T_{J} = 25^{\circ}C,$	-	2.0	15	μS

Thermal Characteristics

$R_{\theta JC}$ T	Thermal Resistance Junction to Case		-	-	1	°C/W
-------------------	-------------------------------------	--	---	---	---	------

Notes:

Symbol

- 1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS} =14.2A, V_{CC} =100V during inductor charging and V_{CC} =0V during the time in clamp.
- 2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 170 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS} =10.8A, V_{CC} =100V during inductor charging and V_{CC} =0V during the time in clamp.

Typical Performance Curves

Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp



Figure 3. Collector to Emitter On-State Voltage vs. Junction Temperature

T_., JUNCTION TEMPERTURE (°C)

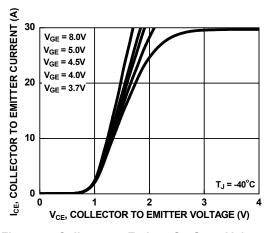


Figure 5. Collector to Emitter On-State Voltage vs. Collector Current

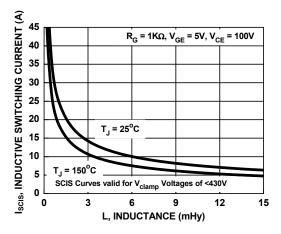


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

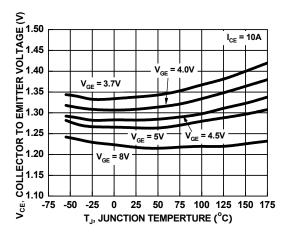


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

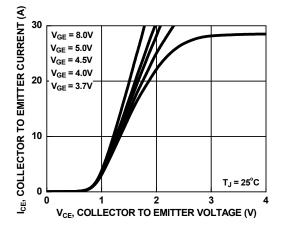


Figure 6. Collector to Emitter On-State Voltage vs. Collector Current

COLLECTOR TO EMITTER CURRENT (A) 30 $V_{GE} = 8.0V$ V_{GE} = 5.0V V_{GE} = 4.5V V_{GE} = 4.0V $V_{GE} = 3.7V$ 10

Typical Performance Curves (Continued)

Figure 7. Collector to Emitter On-State Voltage vs. Collector Current

Ę,

2

V_{CE}, COLLECTOR TO EMITTER VOLTAGE (V)

 $T_J = 175^{\circ}C$

3

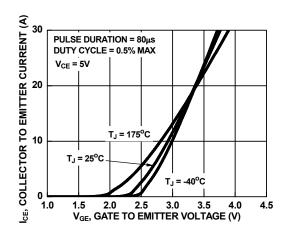


Figure 8. Transfer Characteristics

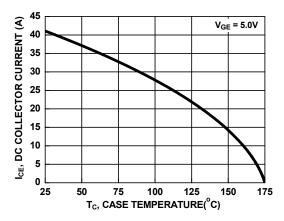


Figure 9. DC Collector Current vs. Case **Temperature**

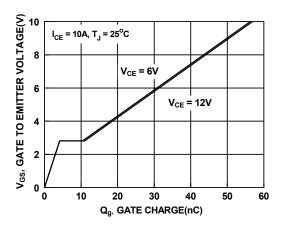


Figure 10. Gate Charge

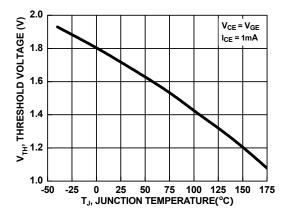


Figure 11. Threshold Voltage vs. Junction Temperature

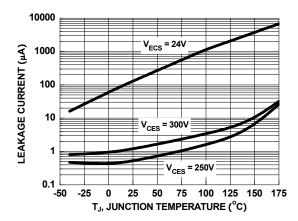
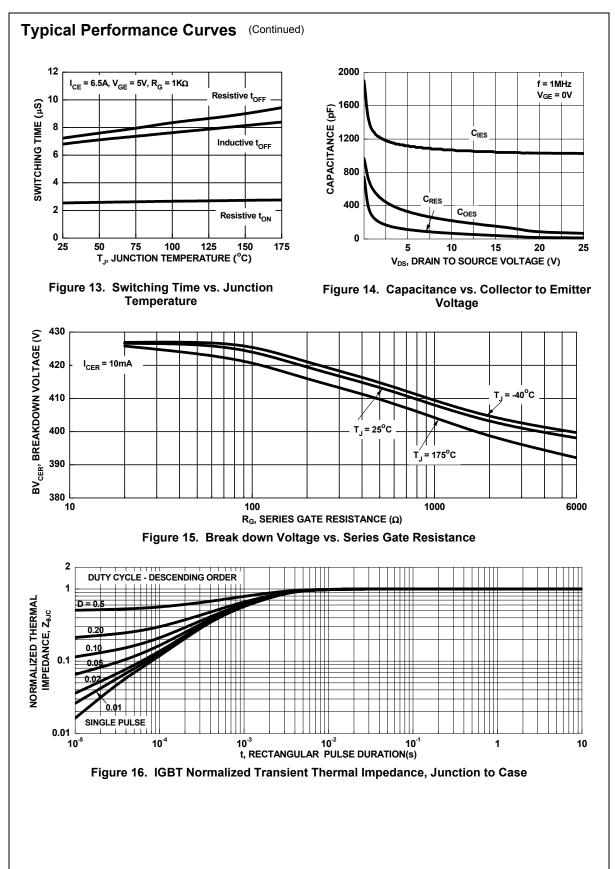



Figure 12. Leakage Current vs. Junction **Temperature**

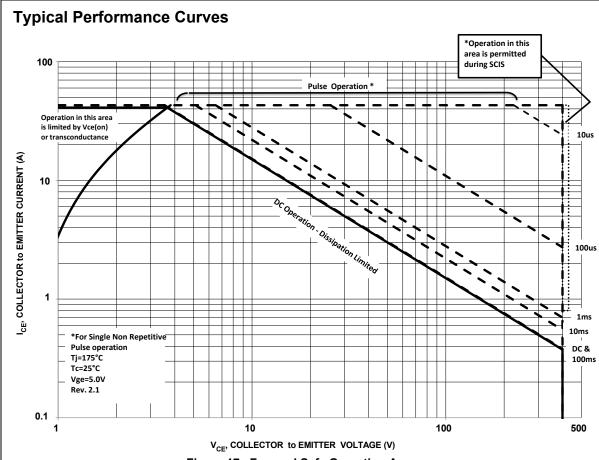


Figure 17. Forward Safe Operating Area

Test Circuit and Waveforms

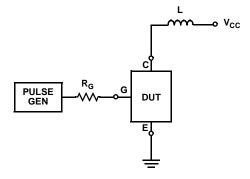


Figure 18. Inductive Switching Test Circuit

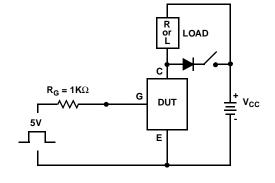


Figure 19. t_{ON} and t_{OFF} Switching Test Circuit

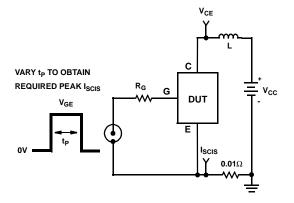
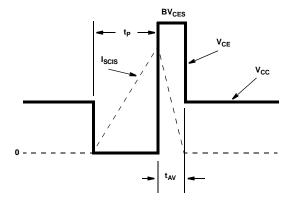
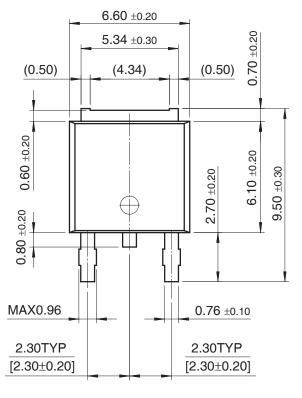
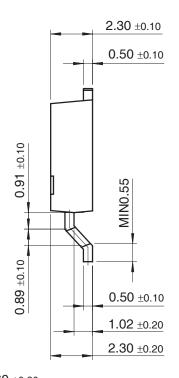
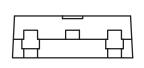
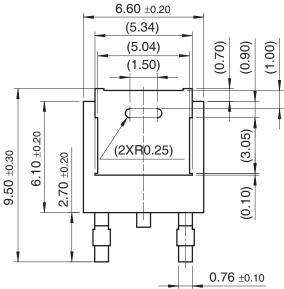


Figure 20. Energy Test Circuit


Figure 21. Energy Waveforms


Mechanical Dimensions

D-PAK

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* $\mathsf{BitSiC}^{\circledR}$ Build it Now™ CorePLUS™ CorePOWER™

CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[©] Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

 $\mathsf{Fairchild}^{\texttt{®}}$ Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™ FETBench™ FlashWriter® * FPS™ F-PFS™ FRFET®

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™

OFĔT QS™

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM[®]

STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM ®* GENERAL

The Power Franchise®

The Right Technology for Your Success™

bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* μSerDes™ **UHC®**

Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICYFAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.