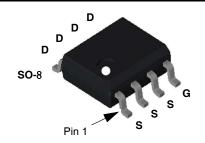


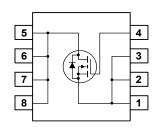
FDS2734

N-Channel UltraFET Trench[®] MOSFET 250V, 3.0A, $117m\Omega$

Features

- Max $r_{DS(on)} = 117 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 3.0 \text{A}$
- Max $r_{DS(on)} = 126m\Omega$ at $V_{GS} = 6V$, $I_D = 2.8A$
- Fast switching speed
- \blacksquare High performance trench technology for extremely low $r_{\mbox{\footnotesize{DS}}(\mbox{\footnotesize{on}})}$
- High power and current handling capability
- RoHS compliant




General Descriptions

This single N-Channel MOSFET is produced using Fairchild Semiconductor's advanced UltraFET Trench® process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

■ DC-DC conversion

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		250	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current -Continuous	(Note 1a)	3.0	۸
ID	-Pulsed		50	Α
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	12.5	mJ
D	Power dissipation	(Note 1a)	2.5	w
P_{D}	Power dissipation (Note 1)		1.0	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction- to -Ambient	(Note 1a)	50	
$R_{\theta JA}$	Thermal Resistance, Junction- to- Ambient	(Note 1b)	125	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction -to- Case	(Note 1)	25	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS2734	FDS2734	SO-8	13"	12mm	2500 units

Ele	ectrical	Charac	teristics	$T_{\rm J}$	= 25°C unless	otherwise	noted
-----	----------	--------	-----------	-------------	---------------	-----------	-------

Symbol	Parameter Test Conditions		Min	Тур	Max	Units	
Off Characteristics							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$	250			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu\text{A}$, referenced to 25°C		157		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 200V, V_{GS} = 0 V$ $V_{DS} = 200V, V_{GS} = 0V$ $T_{J} = 55^{\circ}C$			1 10	μА	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0 V$			±100	nA	

On Characteristics (Note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	3	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		-10.7		mV/ ^c
		$V_{GS} = 10V, I_D = 3.0A,$		97	117	
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 6V$, $I_{D} = 2.8A$,		101	126	mΩ
		$V_{GS} = 10V, I_D = 3.0A, T_J = 125^{\circ}C$		205	225	
9 _{FS}	Forward Transconductance	V _{DS} =10V, I _D =3.0A,		15.1		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 100V V 0V	1960	2610	pF
Coss	Output Capacitance	$V_{DS} = 100V, V_{GS} = 0V,$ $f = 1MHz$	85	130	pF
C _{rss}	Reverse Transfer Capacitance	1 - 10112	26	40	pF
R_{G}	Gate Resistance	f = 1MHz	0.7		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	., .=-,, .	23	37	ns
t _r	Rise Time	$V_{DD} = 125V, I_{D} = 3A$ $V_{GS} = 10V, R_{GS} = 6\Omega$	11	19	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V$, $H_{GS} = 002$	40	64	ns
t _f	Fall Time		11	19	ns
Q_g	Total Gate Charge	V _{DS} = 125V, V _{GS} = 10V	32	45	nC
Q_{gs}	Gate to Source Gate Charge	I _D = 3.0A	9		nC
Q_{gd}	Gate to Drain Charge		8		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	I _{SD} = 3.0A	0.74	1.2	V
t _{rr}	Reverse Recovery Time	$I_F = 3.0 \text{ A}, d_{iF}/dt = 100 \text{A}/\mu \text{s}$	72	108	ns
Q _{rr}	Reverse Recovery Charge		185	278	nC

Notes:

13. R_{0,IA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,IC} is guaranteed by design while R_{0,CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper

b) 125°C/W when mounted on a minimum pad of 2 oz copper

Scale 1: 1 on letter size paper

- 2: Pulse Test Width <300 μ S, Duty Cycle <2%. 3: Starting T_J = 25°C, L = 1mH, I_{AS} = 5A, V_{DD} = 100V, V_{GS} = 10V

Typical Characteristics T_J = 25°C unless otherwise noted

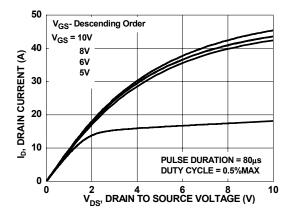


Figure 1. On Region Characteristics

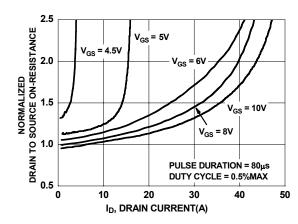


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

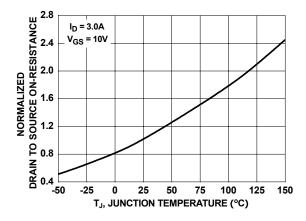


Figure 3. Normalized On Resistance vs Junction Temperature

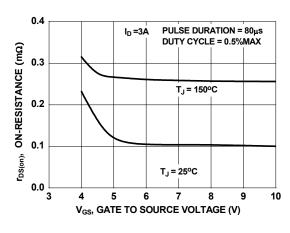


Figure 4. On-Resistance vs Gate to Source Voltage

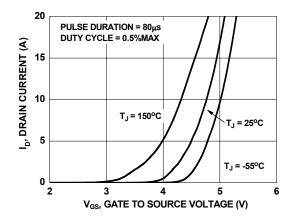


Figure 5. Transfer Characteristics

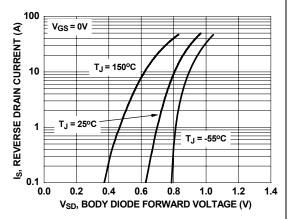


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

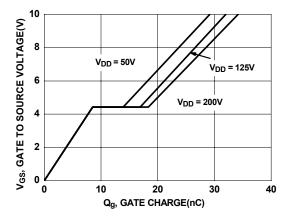


Figure 7. Gate Charge Characteristics

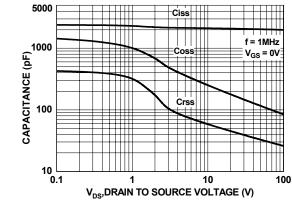


Figure 8. Capacitance vs Drain to Source Voltage

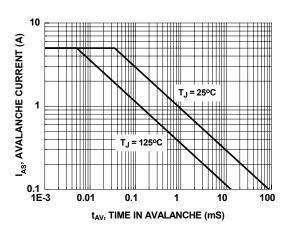


Figure 9. Unclamped Inductive Switching Capability

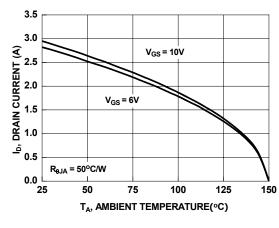


Figure 10. Maximum Continuous Drain Current vs
Ambient Temperature

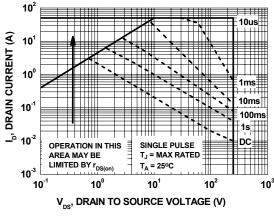


Figure 11. Forward Bias Safe Operating Area

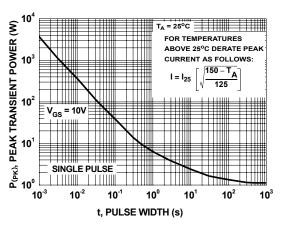


Figure 12. Single Pulse Maximum Power Dissipation

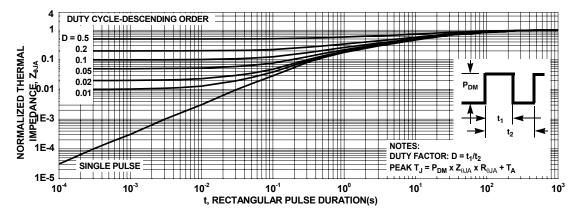


Figure 13. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b Transient thermal response will change depending on the circuit board design

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SILENT SWITCHER® $ACEx^{TM}$ FACT Quiet Series™ OCX^{TM} UniFET™ $\mathsf{UltraFET}^{\circledR}$ ActiveArray™ GlobalOptoisolator™ $OCXPro^{TM}$ SMART START™ $\mathsf{OPTOLOGIC}^{\circledR}$ GTO™ SPM™ VCX™ Bottomless™ Build it Now™ HiSeC™ OPTOPLANAR™ Stealth™ Wire™ CoolFET™ I²C™ $\mathsf{PACMAN^{TM}}$ SuperFET™ SuperSOT™-3 i-Lo™ POP™ CROSSVOLT™ DOME™ $ImpliedDisconnect^{\mathsf{TM}}$ Power247™ SuperSOT™-6 EcoSPARK™ IntelliMAX™ PowerEdge™ SuperSOT™-8 E²CMOS™ ISOPLANAR™ PowerSaver™ SyncFET™ EnSigna™ LittleFET™ PowerTrench[®] ТСМ™ $\mathsf{MICROCOUPLER}^{\mathsf{TM}}$ QFET® FACT™ TinyBoost™ $\mathsf{FAST}^{\mathbb{R}}$ QS™ TinyBuck™ MicroFET™ . TinyPWM™ FASTr™ MicroPak™ QT Optoelectronics™ FPS™ MICROWIRE™ Quiet Series™ TinyPower™ $\mathsf{TinyLogic}^{\mathbb{R}}$ $RapidConfigure^{\intercal_{M}}$ FRFET™ MSX^{TM} MSXPro™ RapidConnect™ TINYOPTO™ μSerDes™ TruTranslation™ Across the board. Around the world.™ The Power Franchise® UHC™ ScalarPump™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.