

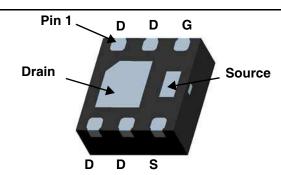
August 2009

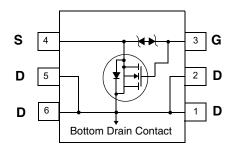
FDMA420NZ

Single N-Channel 2.5V Specified PowerTrench® MOSFET 20V, 5.7A, $30m\Omega$

General Description

This Single N-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to optimize the $\rm R_{DS}(on)$ @V $_{GS}$ =2.5V on special MicroFET leadframe.


Applications


■ Li-Ion Battery Pack

Features

- $R_{DS(on)} = 30m\Omega$ @ $V_{GS} = 4.5 \text{ V}, I_D = 5.7\text{A}$
- $R_{DS(on)} = 40 \text{m}\Omega$ @ $V_{GS} = 2.5 \text{ V}$, $I_D = 5.0 \text{A}$
- Low Profile-0.8mm maximum-in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2.5kV typical (Note 3)
- Free from halogenated compounds and antimony oxides
- RoHS Compliant

MicroFET Bottom View 2X2

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage	20	V	
V_{GSS}	Gate-Source Voltage		±12	V
ı	Drain Current -Continuous	(Note 1a)	5.7	^
ID	-Pulsed		24	A
В	Power dissipation (Steady State)	(Note 1a)	2.4	w
P_{D}		(Note 1b)	0.9	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	52	°C/W
$R_{\theta,IA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	145	C/VV

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
420	FDMA420NZ	7"	12mm	3000 units

Max

Тур

Min

Units

Electrical Characteristics $T_J = 25^{\circ}\text{C}$ unless otherwise noted

Parameter

Off Char	Off Characteristics							
B _{VDSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_{D} = 250\mu A$	20			V		
$\frac{\Delta B_{VDSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		12		mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16V, V_{GS} = 0V,$			1	μΑ		
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12V, \ V_{DS} = 0V$			±10	μА		

Test Conditions

On Characteristics (Note 2)

Symbol

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.6	0.83	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		-3.1		mV/°C
		$V_{GS} = 4.5V, I_D = 5.7A$		16.8	30	
		$V_{GS} = 4.0V, I_D = 5.7A$		17.3	31	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 3.1V, I_D = 5.0A$		18.9	33	
I IDS(ON)	Statio Brain Course On Hostianes	$V_{GS} = 2.5V, I_D = 5.0A$		21.2	40	11132
		$V_{GS} = 4.5V$, $I_D = 5.7A$, $T_J = 150$ °C		24.8	44	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V$, $I_{D} = 5.7A$		28.3		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 40V V 0V	701	935	pF
C _{oss}	Output Capacitance	$V_{DS} = 10V, V_{GS} = 0V,$ f = 1.0MHz	163	220	pF
C _{rss}	Reverse Transfer Capacitance	1 – 1.51711 12	125	190	pF
R_G	Gate Resistance	f = 1.0MHz	1.92		Ω

Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time		9.8	20	ns
t _r	Turn-On Rise Time	$V_{DD} = 10V, I_{D} = 1A$	8.6	18	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5V, R_{GEN} = 6\Omega$	21.5	43	ns
t _f	Turn-Off Fall Time		8.6	18	ns
Q_g	Total Gate Charge	V 10V 1 5.7A	8.8	12	nC
Q_{gs}	Gate-Source Charge	$V_{DS} = 10V, I_{D} = 5.7A,$ $V_{GS} = 4.5V$	0.9	2	nC
Q_{gd}	Gate-Drain Charge	VGS - 4.5V	2.4	4	nC

Drain-Source Diode Characteristics and Maximum Ratings

I _S	Maximum Continuous Drain-Source Diode Forward Current			2.0	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 2.0A$	0.69	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 5.7A,		20	ns
Q _{rr}	Diode Reverse Recovery Charge	di/dt = 100A/μs		5	nC

1. $R_{0,1}A_{0,1}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

a. 52 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 145 °C/W when mounted on a minimum pad of 2 oz copper.

Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%.
 The diode connected between the gate and the source serves only as proection against ESD. No gate overvoltage rating is implied.

Typical Characteristics T_J = 25°C unless otherwise noted

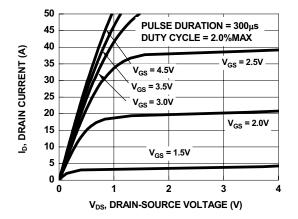


Figure 1. On Region Characteristics

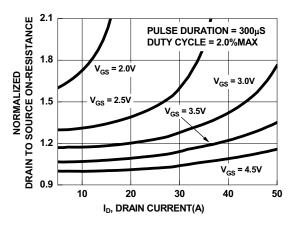


Figure 2. On-Resistance vs Drain Current and Gate Voltage

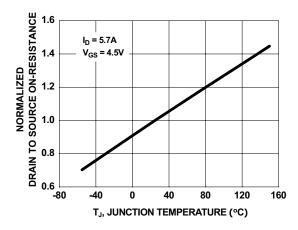


Figure 3. Normalized On Resistance vs Junction Temperature

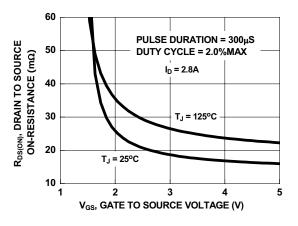


Figure 4. On-Resistance vs Gate to Source Votlage

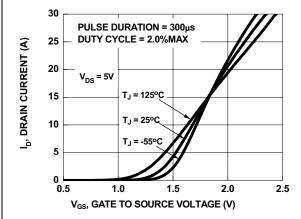


Figure 5. Transfer Characteristics

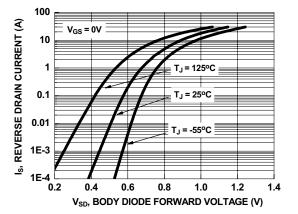
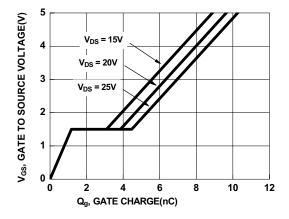



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25°C unless otherwise noted

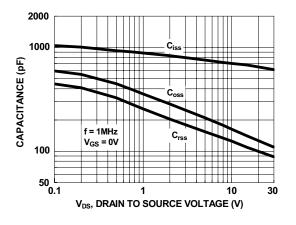
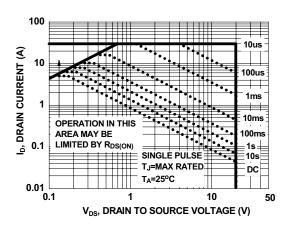



Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

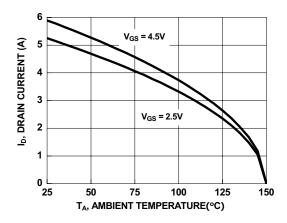


Figure 9. Forward Bias Safe Operating Area

Figure 10. Maximum Continuous Drain Current vs
Ambient Temperature

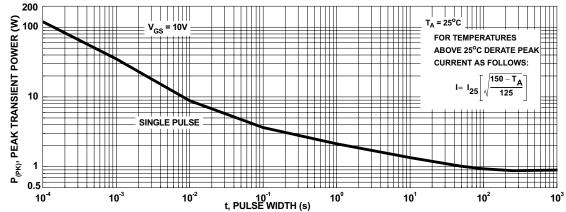


Figure 11. Single Pulse Maximum Power Dissipation

FDMA420NZ Rev B4 4 www.fairchildsemi.com

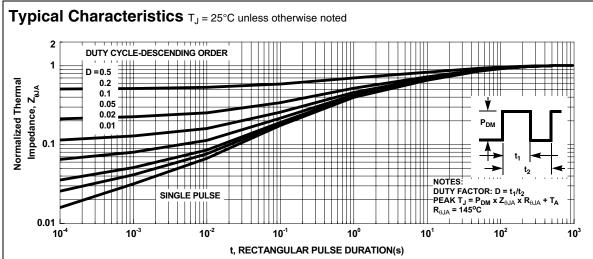
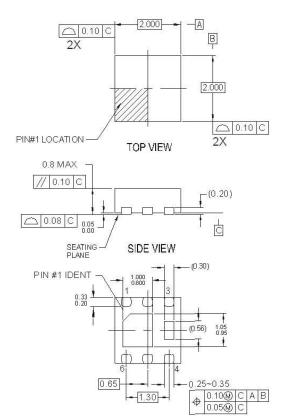



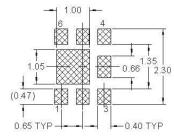
Figure 12. Transient Thermal Response Curve

Dimensional Outline and Pad Layout

NO DRAIN OR GATE TRACES ALLOWED IN THIS AREA

1.05

0.66


2.30

(0.47)

1.05

0.65 TYP

RECOMMENDED LAND PATTERN OPT 1

RECOMMENDED LAND PATTERN OPT 2

BOTTOM VIEW

NOTES:

- A. DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-229 DATED AUG/2003
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. DRAWING FILENAME: MKT-MLP06Lrev2

TRADEMARKS

EfficentMax™

EZSWITCH™*

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™ EcoSPARK®

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®]

FAST[®] FastvCore™ FETBench™ FlashWriter® * F-PFS™ FRFET®

GTO™

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET® OSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM ® 5151E

SuperSOT™-8

The Power Franchise®]wer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriÉault Detect™ TRUECURRENT™*

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I4

FDMA420NZ Rev B4 7 www.fairchildsemi.com