

May 2009

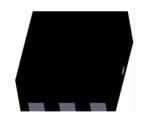
FDMA1027PT

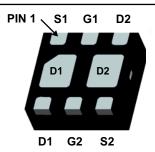
Dual P-Channel PowerTrench® MOSFET

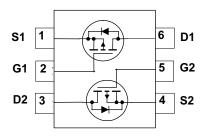
-20 V, -3 A, 120 mΩ

Features

- Max $r_{DS(on)}$ = 120 m Ω at V_{GS} = -4.5 V, I_D = -3.0 A
- Max $r_{DS(on)}$ = 160 m Ω at V_{GS} = -2.5 V, I_D = -2.5 A
- Max $r_{DS(on)}$ = 240 m Ω at V_{GS} = -1.8 V, I_D = -1.0 A
- Low profile 0.55 mm maximum in the new package MicroFET 2x2 **Thin**
- RoHS Compliant
- Free from halogenated compounds and antimony oxides


General Description


This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.


The MicroFET 2x2 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

Applications

- Battery management
- Load switch
- Battery protection

Symbol	Parame	ter		Ratings	Units
V _{DS}	Drain to Source Voltage			-20	V
V _{GS}	Gate to Source Voltage			±8	V
I _D	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-3	Δ.
	-Pulsed			-6	— A
Б	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1a)	1.4	10/
P_{D}	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1b)	0.7	w
T _{.I} , T _{STG}	Operating and Storage Junction Temperat	ure Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	86	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	173	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Dual Operation)	(Note 1c)	69	_ C/VV
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Dual Operation)	(Note 1d)	151	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
27	FDMA1027PT	MicroFET 2x2 Thin	7 "	8 mm	3000 units

Electrical Characteristics $T_J = 25 \, ^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{\mathsf{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±8 V, V _{DS} = 0 V			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25 °C		2		mV/°C
		$V_{GS} = -4.5 \text{ V}, I_D = -3.0 \text{ A}$		90	120	
	r _{DS(on)} Drain to Source On Resistance	$V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ A}$		120	160	
r _{DS(on)}		$V_{GS} = -1.8 \text{ V}, I_D = -1.0 \text{ A}$		172	240	mΩ
	$V_{GS} = -4.5 \text{ V}, I_D = -3.0 \text{ A},$ $T_J = 125 ^{\circ}\text{C}$		118	160		
I _{D(on)}	On to State Drain Current	V _{GS} = -4.5 V, V _{DS} = -5 V	-20			Α
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -3.0 \text{ A}$		7		S

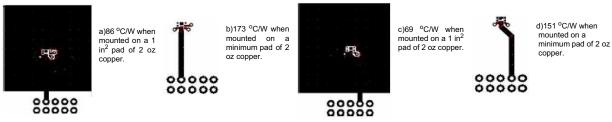
Dynamic Characteristics

C _{iss}	Input Capacitance	V - 10 V V - 0 V	435	pF
C _{oss}	Output Capacitance	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	80	pF
C _{rss}	Reverse Transfer Capacitance	1 171112	45	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		9	18	ns
t _r	Rise Time	V_{DD} = -10 V, I_{D} = -1.0 A V_{GS} = -4.5 V, R_{GEN} = 6 Ω	11	19	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = -4.5 V, R _{GEN} = 012	15	27	ns
t _f	Fall Time		6	12	ns
Q_g	Total Gate Charge	101/1	4	6	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = -10 \text{ V}, I_D = -3.0 \text{ A}$ $V_{GS} = -4.5 \text{ V}$	0.8		nC
Q _{gd}	Gate to Drain "Miller" Charge	V _{GS} = -4.3 V	0.9		nC

Drain-Source Diode Characteristics


Is	Maximum continuous Source-Drain Diode Forward Current			-1.1	Α
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -1.1 \text{ A}$ (Note 2)	-0.8	-1.2	V
t _{rr}	Reverse Recovery Time		17		ns
Q _{rr}	Reverse Recovery Charge	I _F = -3.0 A, α/αι = 100 A/μs	6		nC

Notes:

- 1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,JA}$ is determined by the user's board design.

 (a) $R_{\theta,JA} = 86$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

 - (b) $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA} = 69$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $R_{\theta,JA} = 151$ °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.

2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%

Typical Characteristics T_J = 25 °C unless otherwise noted

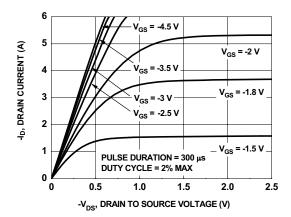


Figure 1. On Region Characteristics

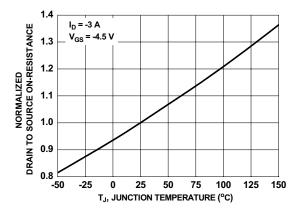


Figure 3. Normalized On Resistance vs Junction Temperature

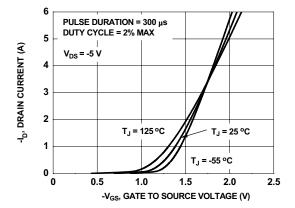


Figure 5. Transfer Characteristics

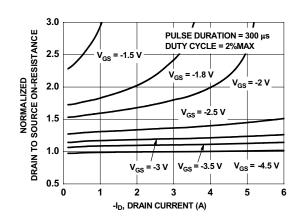


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

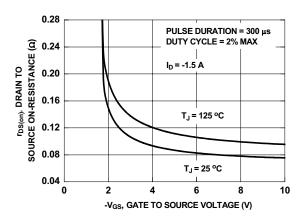


Figure 4. On-Resistance vs Gate to Source Voltage

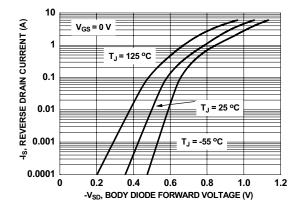


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25 °C unless otherwise noted

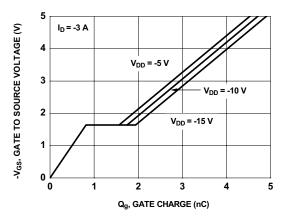


Figure 7. Gate Charge Characteristics

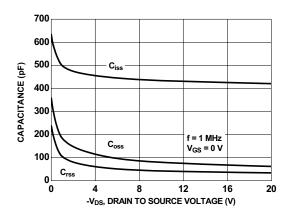


Figure 8. Capacitance vs Drain to Source Voltage

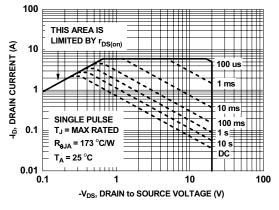


Figure 9. Forward Bias Safe Operating Area

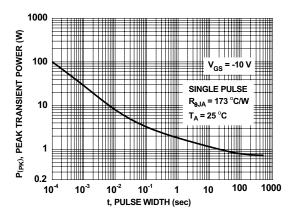
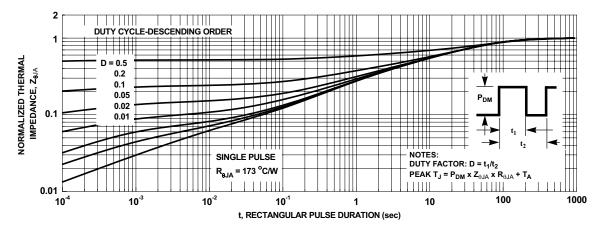
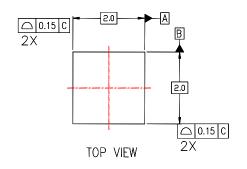
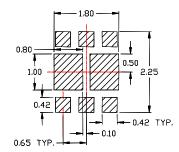
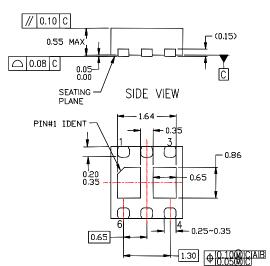


Figure 10. Single Pulse Maximum Power Dissipation


Figure 11. Junction-to-Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

RECOMMENDED LAND PATTERN

BOTTOM VIEW

NOTES:

- A. NON CONFORMS TO JEDEC REGISTRATION MO-288,
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLTTM CTI ™

Current Transfer Logic™ EcoSPARK[®]

EfficentMax™ EZSWITCH™ *

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™

FACT FAST® FastvCore™ FETBench™ FlashWriter® * FRFET®

Global Power ResourceSM Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

OFFT[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW /W /kW at a time™ SmartMax™

SMART START™ SPM®

STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM ®*

The Power Franchise® puwer b

franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICYFAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Pay 140