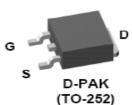
FAIRCHILD

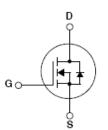
SEMICONDUCTOR®

FDD8444_F085

N-Channel PowerTrench[®] MOSFET

40V, 50A, 5.2mΩ


Features


- Typ $r_{DS(on)}$ = 4m Ω at V_{GS} = 10V, I_D = 50A
- Typ Q_{g(10)} = 89nC at V_{GS} = 10V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse/ Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Transmission
- Distributed Power Architecture and VRMs
- Primary Switch for 12V Systems

October 2010

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		40	V
V _{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (V _{GS} = 10V)	(Note 1)	145	
I _D	Continuous (V _{GS} = 10V, with $R_{\theta JA}$ = 52°C/W)		20	Α
	Pulsed		Figure 4	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	535	mJ
Р	Power Dissipation		153	W
P _D	Derate above 25°C		1.02	W/ºC
TJ, T _{STG}	Operating and Storage Temperature		-55 to +175	°C

Thermal Characteristics

R_{\thetaJC}	Maximum Thermal Resistance, Junction to Case	0.98	°C/W
R_{\thetaJA}	Maximum Thermal Resistance, Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8444	FDD8444_F085	TO-252AA	13"	12mm	2500 units

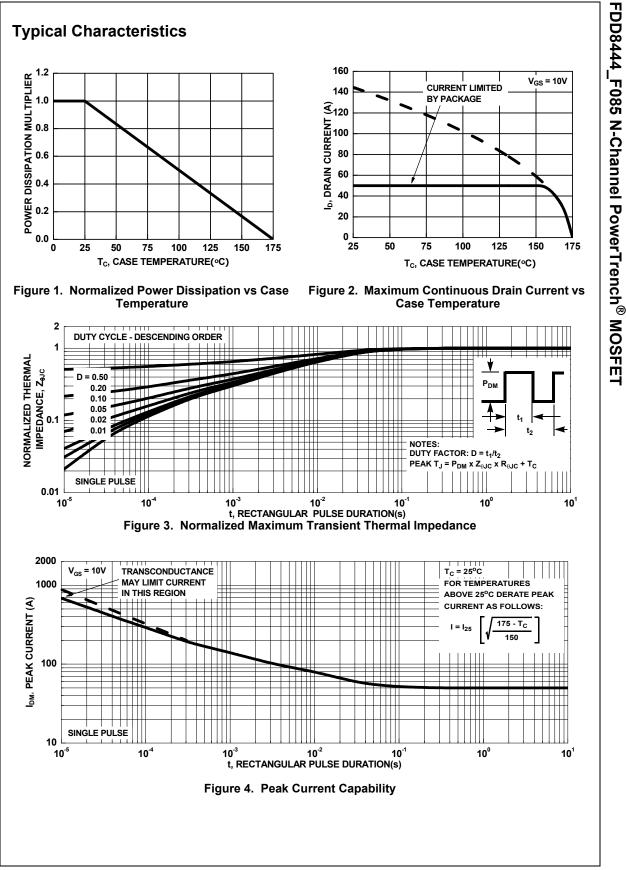
Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Tvp	Max	Units
• • • • • •						••

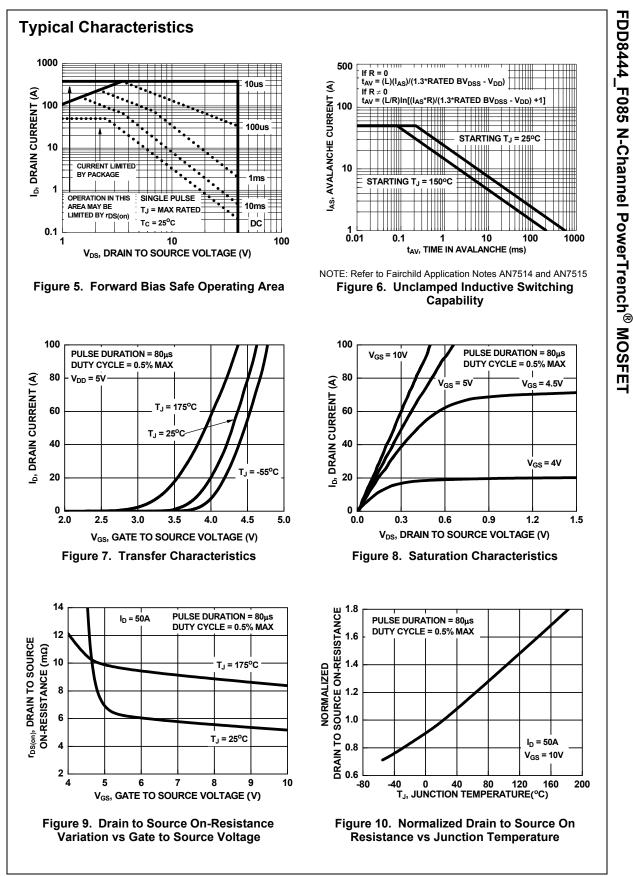
Off Characteristics

B _{VDSS}	Drain to Source Breakdown Voltage	$I_{\rm D}$ = 250 μ A, $V_{\rm GS}$ = 0V		40	-	-	V
1	Zero Gate Voltage Drain Current	V _{DS} = 32V		-	-	1	μA
DSS	Zero Gale Voltage Drain Current	$V_{GS} = 0V$	T _J = 150 ^o C	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

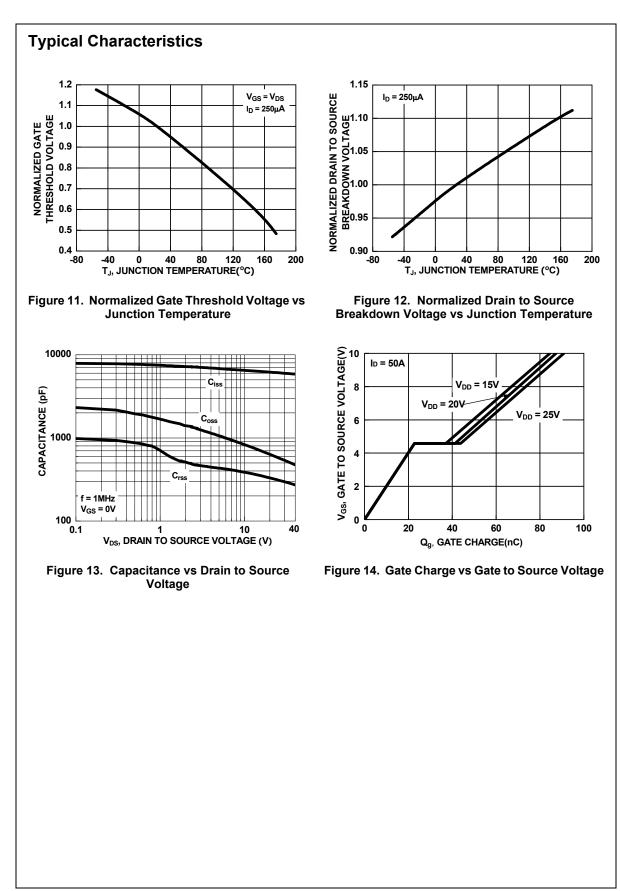
On Characteristics

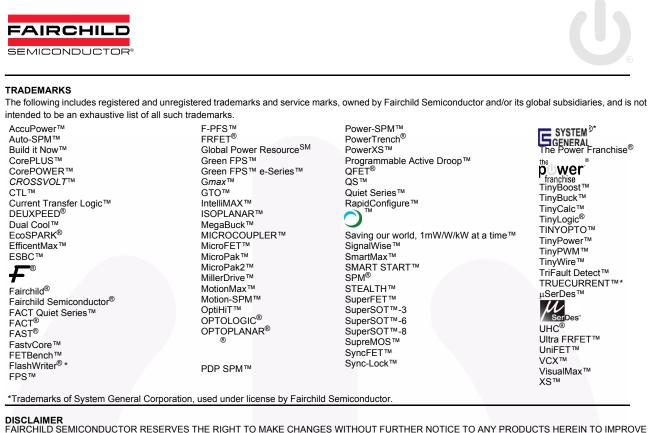

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.5	4	V
		I _D = 50A, V _{GS} = 10V	-	4	5.2	
r _{DS(on)}	Drain to Source On Resistance	I _D = 50A, V _{GS} = 10V, T _J = 175°C	-	7.2	9.4	mΩ

Dynamic Characteristics


C _{iss}	Input Capacitance		0) (-	6195	-	pF
C _{oss}	Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	585	-	pF
C _{rss}	Reverse Transfer Capacitance			-	332	-	pF
R _G	Gate Resistance	f = 1MHz		-	1.9	-	Ω
Q _{g(TOT)}	Total Gate Charge at 10V	V _{GS} = 0 to 10V		-	89	116	nC
Q _{g(5)}	Total Gate Charge at 5V	V_{GS} = 0 to 5V			43	56	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 to 2V	V _{DD} = 20V I _D = 50A	-	11	14.3	nC
Q _{gs}	Gate to Source Gate Charge		$I_0 = 30A$ $I_0 = 1.0mA$	-	23	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		.y	-	11	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	20	-	nC

Sutching Characteristics $\frac{1}{100}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{100000}$ $\frac{1}{10000000000000000000000000000000000$	Turn-On Time Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Turn-Off Time in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time	V _{GS} = 10V, R _{GS} = 2Ω	-	12 78 48 15	-	ns ns ns
On t_d(on)Turn-On Delay Time $V_{DD} = 20V, I_D = 50A$ $ 12$ $ t_r$ Turn-Off Delay Time $V_{GS} = 10V, R_{GS} = 2\Omega$ $ -$ <	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Turn-Off Time in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time	V _{GS} = 10V, R _{GS} = 2Ω	-	12 78 48 15	-	ns ns
$\begin{array}{c c c c c c c } \hline Turn-On Delay Time & & & & & & & & & & & & & & & & & & &$	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Turn-Off Time in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time	V _{GS} = 10V, R _{GS} = 2Ω	-	78 48 15	-	ns
tr td(off)Turn-On Rise Time Turn-Off Delay Time tf toff $V_{DD} = 20V, I_D = 50A$ $V_{GS} = 10V, R_{GS} = 2\Omega$ -78-t toffTurn-Off Fall Time Turn-Off Time-1548-toffTurn-Off Time9595Drain-Source Diode Characteristics V_{SD} Source to Drain Diode Voltage $I_{SD} = 50A$ $I_{SD} = 25A$ -0.91.25 I_{rr} Reverse Recovery Time Q_{rr} $I_F = 50A, dI_F/dt = 100A/\mus$ -3951 Otes: : Package current limitation is 50A4559	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Turn-Off Time in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time	V _{GS} = 10V, R _{GS} = 2Ω	-	48 15		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Fall Time Turn-Off Time in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time	tics	-	15	-	
fTurn-Off Fall Time-15-offTurn-Off Time-95Drain-Source Diode Characteristics V_{SD} Source to Drain Diode Voltage $I_{SD} = 50A$ -0.91.25 $I_{SD} = 25A$ -0.81.0 rr Reverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951 Q_{rr} Reverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ -4559otes:Package current limitation is 50A.	Turn-Off Fall Time Turn-Off Time in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time					ns
Turn-Off Time95Drain-Source Diode Characteristics V_{SD} Source to Drain Diode Voltage $I_{SD} = 50A$ -0.91.25 $I_{SD} = 25A$ -0.81.0 I_{rr} Reverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951 Q_{rr} Reverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ -4559lotes:: Package current limitation is 50A.	in-Source Diode Characterist Source to Drain Diode Voltage Reverse Recovery Time		-	_	-	ns
	Source to Drain Diode Voltage Reverse Recovery Time			-	95	ns
Source to Drain blode voltage $I_{SD} = 25A$ -0.81.0rrReverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951 Q_{rr} Reverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ -4559otes:Package current limitation is 50A.	Reverse Recovery Time	1 = 504				
VSD Source to Drain Diode Voltage ISD = 25A - 0.8 1.0 I_{rr} Reverse Recovery Time IF = 50A, dIF/dt = 100A/µs - 39 51 Qrr Reverse Recovery Charge IF = 50A, dIF/dt = 100A/µs - 45 59 Notes: : Package current limitation is 50A. - - -	Reverse Recovery Time		-	0.9	1.25	
rr Reverse Recovery Time I I - 39 51 Q_{rr} Reverse Recovery Charge I F 50A, dI - 45 59 Iotes: : Package current limitation is 50A.			-	0.8	1.0	V
$I_F = 50A, dI_F/dt = 100A/\mu s$ - 45 59 Interse Recovery Charge IF = 50A, dI_F/dt = 100A/ μ s - 45 59 Interse State S			-	39	51	ns
lotes: : Package current limitation is 50A.	Reverse Recovery Unarge	$I_F = 50A, dI_F/dt = 100A/\mu s$	-	45	59	nC


This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.



FDD8444_F085 Rev C (W)

FDD8444_F085 Rev C (W)

RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Advance information Formative / In Design may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at date. Fairchild Semiconductor reserves the right to make changes at any time notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the make changes at any time without notice to improve the design. Obscients Nat La Draduction Datasheet contains specifications on a product that is discontinued by Fairchild	Datasheet Identification	Product Status	Definition
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the make changes at any time without notice to improve the design. Observed Not to Production Datasheet contains specifications on a product that is discontinued by Fairchild	Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Not definition for definition Pull Production make changes at any time without notice to improve the design. Observation Datasheet contains specifications on a product that is discontinued by Fairchill	Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolute Not In Production Datasheet contains specifications on a product that is discontinued by Fairchil	No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Semiconductor. The datasheet is for reference information only.	Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.