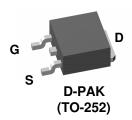
August 2006

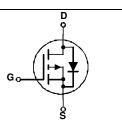
FDD6637


35V P-Channel PowerTrench® MOSFET

General Description

This P-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench technology to deliver low Rdson and optimized Bvdss capability to offer superior performance benefit in the applications.

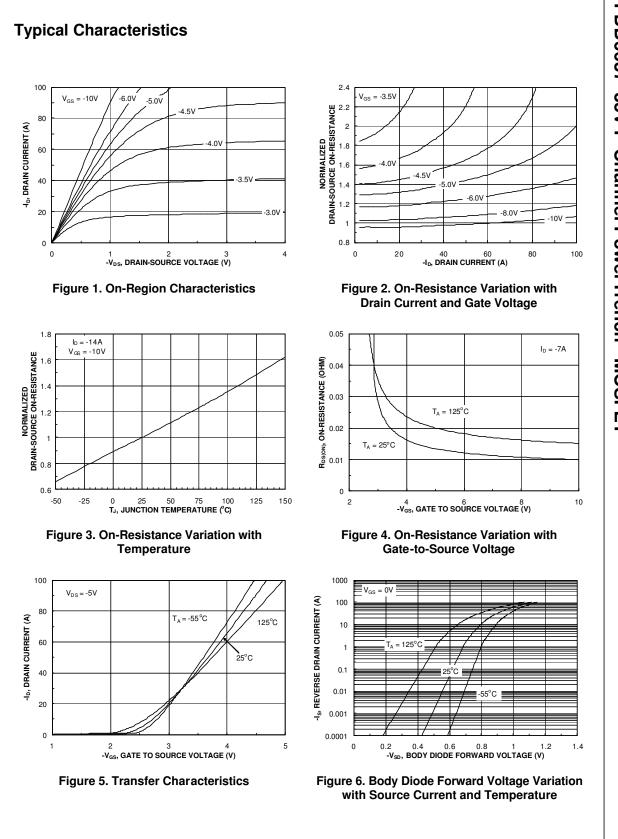
Applications


- Inverter
- Power Supplies

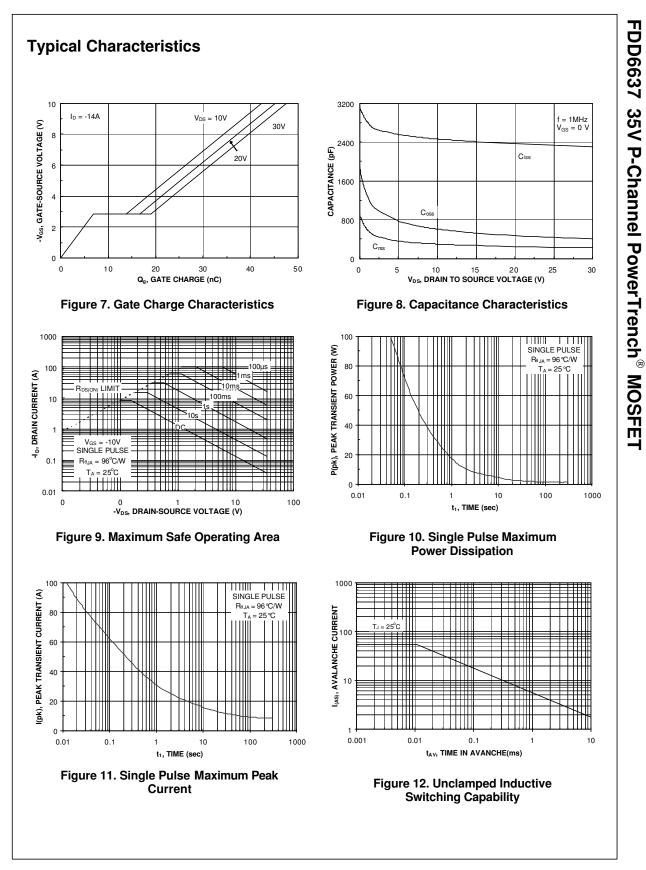
Features

- -55 A, -35 V $R_{DS(ON)} = 11.6 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 18 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- High performance trench technology for extremely low R_{DS(ON)}
- RoHS Compliant

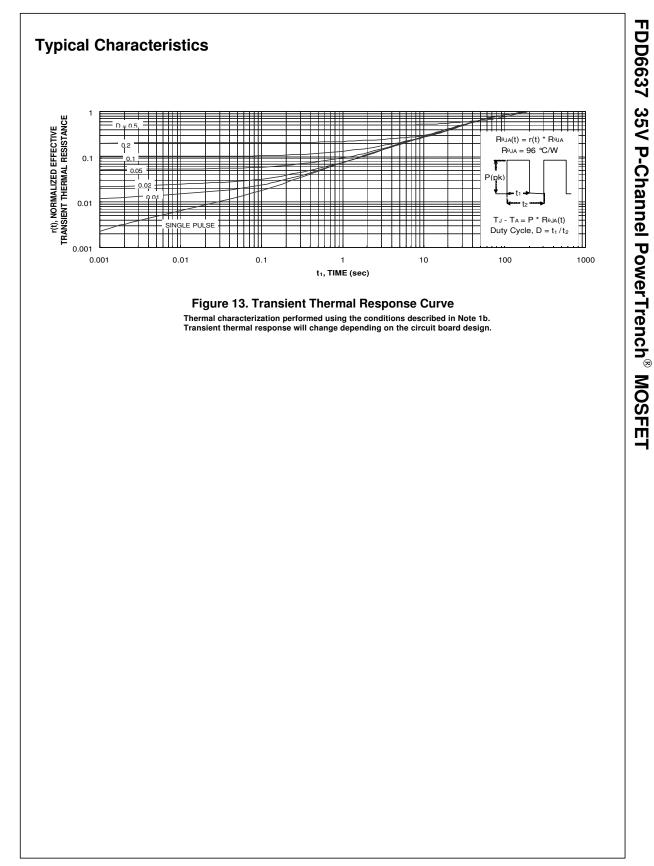
Absolute Maximum Ratings T_A=25°C unless otherwise noted

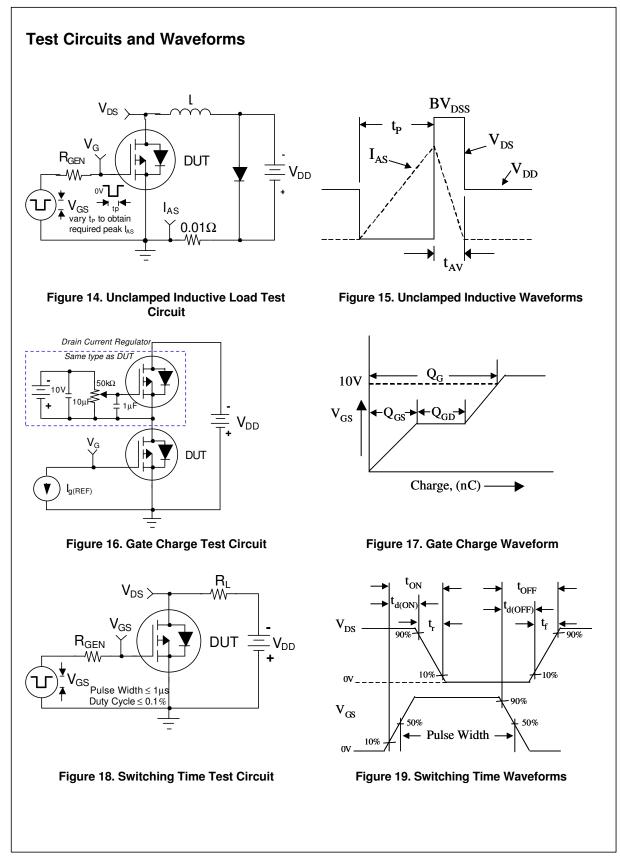

Symbol	Para	ameter		F	Ratings	Units
V _{DSS}	Drain-Source Voltage				-35	V
$V_{\text{DS}(\text{Avalanche})}$	Drain-Source Avalanche V	/oltage (maximum)) (Note 4)		-40	V
V _{GSS}	Gate-Source Voltage				±25	V
I _D	Continuous Drain Current	@T _c =25℃	(Note 3)		-55	A
		@T _A =25℃	(Note 1a)		-13	
		Pulsed	(Note 1a)		-100	
PD	Power Dissipation	@T _c =25℃	(Note 3)		57	W
		@T _A =25 ℃	(Note 1a)		3.1	
		@T _A =25 ℃	(Note 1b)		1.3	
T _J , T _{STG}	Operating and Storage Jur	nction Temperature	e Range		55 to +150	°C
Therma	I Characteristics					
R _{eJC}	Thermal Resistance, June	ction-to-Case	(Note 1)		2.2	°C/W
R _{eja}	Thermal Resistance, June	ction-to-Ambient	(Note 1a)		40	
R _{eja}	Thermal Resistance, June	ction-to-Ambient	(Note 1b)		96	
Packag	e Marking and Ord	dering Infor	mation			•
Device N	v	Ŭ	ckage	Reel Size	Tape width	Quantity
FDD6	FDD6637 FDD6637 D-PAK (TO-252)		(TO-252)	13"	12mm 2500 uni	

©2006 Fairchild Semiconductor Corporation FDD6637 Rev C2(W)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings		•	•	•	•
E _{AS}	Drain-Source Avalanche Energy (Single Pulse)	$V_{DD} = -35 V, I_{D} = -11 A, L = 1mH$		61		mJ
I _{AS}	Drain-Source Avalanche Current			-14		Α
Off Chara	acteristics(Note 2)					
BV_{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-35			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = -28 \ V, V_{\text{GS}} = 0 \ V$			-1	μA
I _{GSS}	Gate-Body Leakage	$V_{\text{GS}} = \pm 25 \text{ V}, \qquad V_{\text{DS}} = 0 \text{ V}$			±100	nA
On Chara	Acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-1	-1.6	-3	V
$R_{DS(on)}$	Static Drain–Source On–Resistance	$V_{GS} = -10 V$, $I_D = -14 A$ $V_{GS} = -4.5 V$, $I_D = -11 A$ $V_{CC} = -10 V$, $I_D = -14 A$, $T_{c} = 125^{\circ}C$		9.7 14.4 14.7	11.6 18 19	mΩ
g _{FS}	Forward Transconductance	$V_{GS} = -10 \text{ V}, I_D = -14 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{DS} = -5 \text{ V}, I_D = -14 \text{ A}$		35		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			2370		pF
C _{oss}	Output Capacitance	$-V_{DS} = -20 V, V_{GS} = 0 V,$		470		pF
C _{rss}	Reverse Transfer Capacitance	– f = 1.0 MHz		250		pF
R _G	Gate Resistance	f = 1.0 MHz		3.6		Ω
Switchin	Characteristics (Note 2)		•	•	•	•
t _{d(on)}	Turn–On Delay Time			18	32	ns
tr	Turn–On Rise Time	$V_{DD} = -20 V, \qquad I_{D} = -1 A,$		10	20	ns
t _{d(off)}	Turn-Off Delay Time	$V_{\text{GS}} = -10 \text{ V}, \qquad R_{\text{GEN}} = 6 \ \Omega$		62	100	ns
t _f	Turn–Off Fall Time	<u>]</u>		36	58	ns
Q _g	Total Gate Charge, $V_{GS} = -10V$			45	63	nC
Q _g	Total Gate Charge, $V_{GS} = -5V$	$V_{DS} = -20 V, I_{D} = -14 A$		25	35	nC
Q _{gs}	Gate-Source Charge			7		nC
Q_{gd}	Gate-Drain Charge			10		nC

FDD6637 Rev. C2(W)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Diode Characteristics					
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = -14 A$ (Note 2)		-0.8	-1.2	V
rr	Diode Reverse Recovery Time	IF = -14 A, diF/dt = 100 A/µs		28		ns
Qrr	Diode Reverse Recovery Charge			15		nC
	a) R _{eJA} =40℃ 1in ² pad of	7/W when mounted on a 2 oz copper	b) R _{eJA} on a	= 96°C/W v minimum	when mour pad.	ted
cale 1 : 1 on le	tter size paper					
	ulse Width < 300μs, Duty Cycle < 2.0%					
. Maximum cu	rrent is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$					


FDD6637 35V P-Channel PowerTrench[®] MOSFET

FDD6637 Rev. C2(W)

FDD6637 Rev. C2(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FACT Quiet Series™ ActiveArray™ GlobalOptoisolator™ Bottomless™ GTO™ Build it Now™ HiSeC™ CoolFET™ I²C[™] i-Lo™ CROSSVOLT™ DOME™ ImpliedDisconnect[™] EcoSPARK™ IntelliMAX™ E²CMOS™ ISOPLANAR™ EnSigna™ LittleFET™ FACT™ MICROCOUPLER™ $\mathsf{FAST}^{\mathbb{R}}$ MicroFET™ FASTr™ MicroPak™ FPS™ MICROWIRE™ FRFET™ MSX™ MSXPro™ Across the board. Around the world.™

OCX™ OCXPro™ OPTOLOGIC[®] **OPTOPLANAR™** PACMAN™ POP™ Power247™

SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 . SuperSOT™-6

UniFET™ UltraFET® VCX™ Wire™

	Power247 11	SuperSOT 11-6
	PowerEdge™	SuperSOT™-8
	PowerSaver™	SyncFET™
	PowerTrench [®]	TCM™
1	QFET [®]	TinyBoost™
	QS™	TinyBuck™
	QT Optoelectronics™	TinyPWM™
	Quiet Series™	TinyPower™
	RapidConfigure™	TinyLogic [®]
	RapidConnect™	TINYOPTO™
	μSerDes™	TruTranslation™
	ScalarPump™	UHC™

DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

The Power Franchise[®] Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS