

FAN5009

Dual Bootstrapped 12V MOSFET Driver

Features

- Drives N-channel High-Side and Low-Side MOSFETs in a synchronous buck configuration
- 12V High-Side and 12V Low-Side Drive
- Internal Adaptive "Shoot-Through" Protection
- Integrated Bootstrap Diode for High-Side Drive
- · Fast rise and fall times
- Switching Frequency Up to 500kHz
- OD input for Output Disable allows for synchronization with PWM controller
- SOIC-8 Package
- Available in low thermal resistance MLP package

Applications

- Multi-phase VRM/VRD regulators for Microprocessor Power
- High Current/High Frequency DC/DC Converters
- High Power Modular Supplies

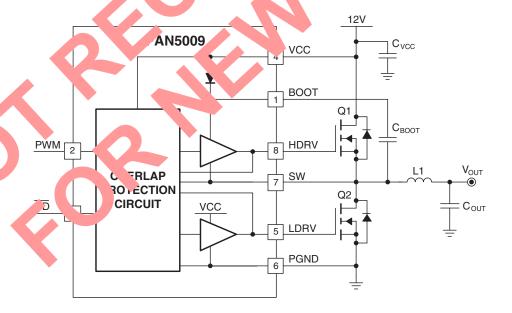
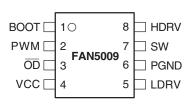
General Description

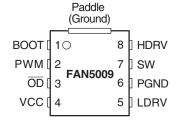
The FAN5009 is a dual, high frequency Mc FET dier, specifically designed to drive N-Chanr pow MO ETs in a synchronous-rectified buck consister. These livers, combined with a Fairchild Multi-Pha WM ontroller and power MOSFETs, form a consister of large regulator solution for advanced microrcesses.

The FAN5009 drives the upper a power MOSFL gates of a synchronous buck required boot diode and requires only an external butther capacitor (C_{BOOT}) and on the FAL1009 were capacity to elicienty. It is power MOSFL to the encies up to 0k. The predictive and the MOSFETs from only sting simultaneous to the encies of the e

The AN5009 is read for open on from 0°C to +85°C and available in lover SOIC-8 or MLP packages.

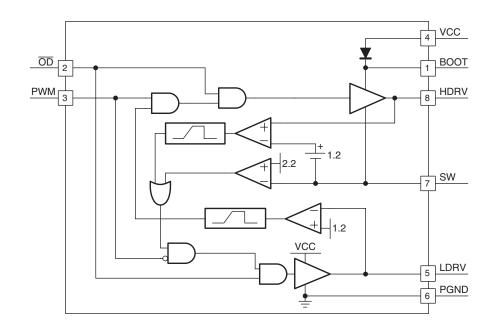
Typical Application


Figure 1. Typical Application.

FAN5009 PRODUCT SPECIFICATION

Pin Configuration



FAN5009MP 8-pin MLP package (Paddle should be connected to ground or left floating)

Pin Definitions

Pin #	Pin Name	Pin Function Description
1	воот	Bootstrap Supply Input. Provides voltage supply to high-side MOSFET driver. Connect to bootstrap capacitor. See Applications Section.
2	PWM	PWM Signal Input. This pin accepts a logic-level PWM signal from the controller.
3	ŌD	Output Disable. When low, this pin disables FET switching (HDRV and LDRV are held low).
4	VCC	Power Input. +12V chip bias power. Bypass with a 1µF ceramic capacitor.
5	LDRV	Low Side Gate Drive Output. Connect to the gate of low-side power MOSFET(s).
6	PGND	Power ground. Connect directly to source of low-side MOSFET(s).
7	SW	Switch Node Input . Connect as shown in Figure 1. SW provides return for high-side bootstrapped driver and acts as a sense point for the adaptive shoot-thru protection.
8	HDRV	High Side Gate Drive Output – Connect to the gate of high-side power MOSFET(s).

Functional Block Diagram

2 REV. 1.0.5 7/22/04

PRODUCT SPECIFICATION FAN5009

Absolute Maximum Ratings

Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply individually, not in combination. Unless otherwise specified, voltages are referenced to PGND.

Parameter		Min.	Max.	Units
VCC to PGND		-0.3	15	V
PWM and OD pins		-0.3	5.5	V
SW to PGND	Continuous	-1	15	V
	Transient (t=100nsec, F≤500kHz)	-5 ⁽¹⁾	25	V
BOOT to SW		-0.3	15	V
BOOT to PGND	Continuous	-0.3	30	V
	Transient (t=100nsec, F≤500kHz)		33 ⁽¹⁾	V
HDRV		V _{SW} -1	V _{BOOT} +0.3	V
LDRV	Continuous	-0.5	V _{CC} +0.3	V
	Transient (t=200nsec)	-2 ⁽¹⁾		V

Notes:

Thermal Information

Parameter	Min.	Тур.	Max.	Units
Junction Temperature (T _J)	0		150	°C
Storage Temperature	-65		150	°C
Lead Soldering Temperature, 10 seconds			300	°C
Vapor Phase, 60 seconds			215	°C
Infrared, 15 seconds			220	°C
Power Dissipation (P _D) T _A = 25°C			715	mW
Thermal Resistance, SO8 – Junction to Case θ _{JC}		40		°C/W
Thermal Resistance, SO8 – Junction to Ambient θ _{JA}		140		°C/W
Thermal Resistance, MLP – Junction to Paddle θ_{JC}		4		°C/W

Recommended Operating Conditions

Parameter	Conditions	Min.	Тур.	Max.	Units
Supply Voltage VCC	VCC to PGND	10	12	13.5	V
Ambient Temperature (T _A)		0		85	°C
Junction Temperature (T _J)		0		125	°C

REV. 1.0.5 7/22/04 3

^{1.} For transient derating beyond the levels indicated, refer to the graphs on page 7.

FAN5009 PRODUCT SPECIFICATION

Electrical Specifications

 V_{CC} = 12V, and T_A = 25°C using circuit in Figure 2 unless otherwise noted. The \bullet denotes specifications which apply over the full operating temperature range.

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Input Supply	·				Į.	!	!
VCC Voltage Range	V _{CC}		•	6.4	12	13.5	V
VCC Current	I _{CC}	OD = 0V	•		3.5	8	mA
Bootstrap Diode	1				I	1	1
Continuous Forward Current	I _{F(AVG)}		•			25	mA
Reverse Breakdown Voltage	V _R		•	15			V
Reverse Recovery Time ²	t _{RR}				10		ns
Forward Voltage ²	V _F	I _F = 10mA			0.8	0.95	V
OD Input	-1				1	1	1
Input High Voltage	V _{IH (OD)}		•	2.5			V
Input Low Voltage	V _{IL (OD)}		•			0.8	V
Input Current	I _{OD}	OD = 3.0V	•	-300		+300	nA
Propagation Delay ²	$t_{pdl(\overline{OD})}$	See Figure 3			30	40	ns
	$t_{pdh(\overline{OD})}$				30	45	ns
PWM Input						-	•
Input High Voltage	V _{IH(PWM)}		•	3.5			V
Input Low Voltage	V _{IL(PWM)}		•			0.8	V
Input Current	I _{IL(PWM)}		•	-1		+1	μΑ
High-Side Driver							•
Output Resistance, Sourcing Current	R _{HUP}	$V_{BOOT}-V_{SW} = 12V$			3.8	4.4	Ω
Output Resistance, Sinking Current	R _{HDN}	$V_{BOOT}-V_{SW} = 12V$			1.4	1.8	Ω
Transition Times ^{2,4}	t _{R(HDRV)}	See Figure 2			40	55	ns
	t _{F(HDRV)}				20	30	ns
Propagation Delay ^{2,3}	t _{pdh(HDRV)}	See Figure 2, and 4			50	65	ns
	t _{pdl(HDRV)}				25	40	ns

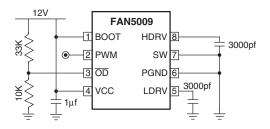


Figure 2. Test Circuit

4 REV. 1.0.5 7/22/04