

July 2007

EGP30A - EGP30K

3.0 Ampere Glass Passivated High Efficiency Rectifiers

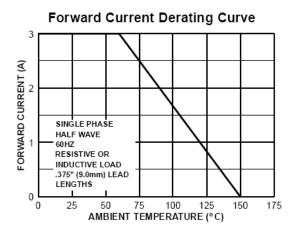
Features

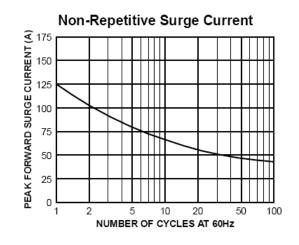
- Glass passivated cavity-free junction
- · High surge curent capability
- Low leakage current
- · Superfast recovery time for high efficiency
- · Low forward voltage, high current capability

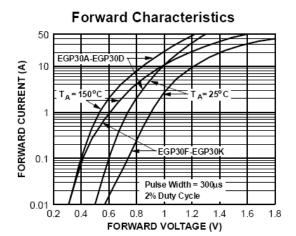
DO-201AD Glass case COLOR BAND DENOTES CATHODE

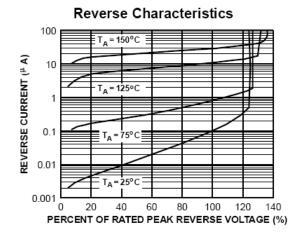
Absolute Maximum Ratings* T_a = 25°C unless otherwise noted

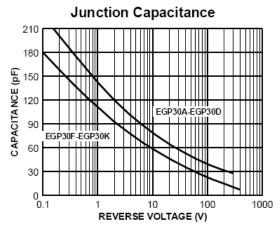
Symbol	Parameter	Value	Units
I _O	Average Rectified Current .375 " lead length @ TL= 55°C	3.0	А
İ _f (surge)	Peak Forward Surge Current 8.3 ms single half-sine-wave Superimposed on rated load (JEDEC method)	125	А
P _D	Total Device Dissipation	6.25	W
	Derate above 25°C	50	mW°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	20	°C/W
Rejl	Thermal Resistance, Junction to Lead	8.5	°C/W
T_J , T_{STG}	Junction and Storage Temperature Range	-65 ~ 150	°C

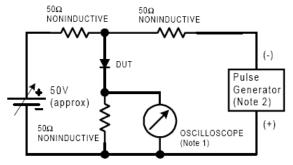

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

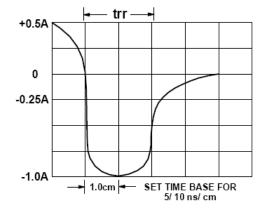

Electrical Characteristics* T_a = 25°C unless otherwise noted


		Device							
Parameter	30A	30B	30C	30D	30F	30G	30J	30K	Units
Peak Repetitive Reverse Voltage	50	100	150	200	300	400	600	800	V
Maximum RMS Voltage	35	70	105	140	210	280	420	560	V
DC Reverse Voltage (Rated VR)	50	100	150	200	300	400	600	800	V
Maximum Reverse Current @ rated VR TA = 25°C TA = 125°C	5.0 100								μ Α μ Α
Maximum Reverse Recovery Time IF = 0.5 A, IR = 1.0 A, Irr = 0.25 A	50 75							nS	
Maximum Forward Voltage @ 3.0 A		0.95				1.25		.7	V
Typical Junction Capacitance VR = 4.0 V, f = 1.0 MHz		95 75						pF	


^{*} Pulse Test: Pulse Width≤300μs, Duty Cycle≤2%


Typical Performance Characteristics





Reverse Recovery Time Characterstic and Test Circuit Diagram

NOTES

- 1. Rise time = 7.0 ns max; Input impedance = 1.0 megaohm 22 pf.
- 2. Rise time = 10 ns max; Source impedance = 50 ohms.

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[®]
Build it Now[™]
CorePLUS[™]
CROSSVOLT[™]
CTL[™]

Current Transfer Logic™ EcoSPARK®

Fairchild[®]

Fairchild Semiconductor® FACT Quiet Series $^{\text{TM}}$ FACT®

FAST[®]
FastvCore[™]
FPS[™]
FRFET[®]

Global Power ResourceSM

Green FPS™ e-Series™

GTO™

i-Lo™

IntelliMAX™
ISOPLANAR™

MegaBuck™

MICROCOUPLER™
MicroFET™
MicroPak™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP-SPM™ Power220® Power247[®]
POWEREDGE[®]
Power-SPM[™]
PowerTrench[®]

Programmable Active Droop™ QFET®

QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™

SPM[®]
STEALTHTM
SuperFETTM
SuperSOTTM-3
SuperSOTTM-6

SuperSOT™-8 SvncFET™

The Power Franchise®

TinyBoostTM
TinyBuckTM
TinyLogic[®]
TINYOPTOTM
TinyPowerTM
TinyPWMTM
TinyWireTM
µSerDesTM
UHC[®]
UniFETTM
VCXTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.