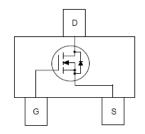


December 2010

BSS138W

N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description

These N-Channel enhancement mode field effect transistor. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- $P_{DS(ON)} = 3.5\Omega$ @ $V_{GS} = 10V$, $I_D = 0.22A$ $R_{DS(ON)} = 6.0\Omega$ @ $V_{GS} = 4.5V$, $I_D = 0.22A$
- High density cell design for extremely low PDS(ON)
- Rugged and Reliable
- Compact industry standard SOT-323 surface mount package

Absolute Maximum Ratings $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Value	Units	
V _{DSS}	Drain-Source Voltage	50	V	
V_{GSS}	Gate-Source Voltage	±20	V	
I _D	Drain Current - Continuous (Note1) - Pulsed	0.21 0.84	A A	
$T_{J_i}T_{STG}$	Operating and Storage Junction Temperature Range	-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300	°C	

Thermal Characteristics

Symbol	Parameter		Value	Units	
P _D	Maximum Power Dissipation Derate Above 25°C	(Note1)	340 2.72	mW mW/°C	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note1)	367	°C/W	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
138	BSS138W	7"	8mm	3000 units

Electrical Characteristics $T_A = 25\%$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Characteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	50			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		71		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 50V, V_{GS} = 0V$ $V_{DS} = 50V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ $V_{DS} = 30V, V_{GS} = 0V$			0.5 5 100	μA μA nA
I_{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
On Chara	cteristics (Note2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1mA$	0.8	1.3	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 1mA, Referenced to 25°C		-3.9		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10V, I_D = 0.22A$ $V_{GS} = 4.5V, I_D = 0.22A$ $V_{GS} = 10V, I_D = 0.22A, T_J = 125$ °C		1.17 1.36 2.16	3.5 6.0 5.8	Ω Ω Ω
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10V, V_{DS} = 5V$	0.2			Α
9 _{FS}	Forward Transconductance	$V_{DS} = 10V, I_D = 0.22A$	0.12			S
Dynamic	Characteristics			•	·	•
C _{iss}	Input Capacitance			38		pF
C _{oss}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0MHz$		5.9		pF
C _{rss}	Reverse Transfer Capacitance			3.5		pF
R_{G}	Gate Resistance	V _{GS} = 15mV, f = 1.0MHz		11		Ω
Switching	Characteristics (Note2)					
t _{d(on)}	Turn-On Delay Time			2.3	5	ns
t _r	Turn-On Rise Time	$V_{DD} = 30V, I_D = 0.29A,$		1.9	18	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		6.7	36	ns
t _f	Turn-Off Fall Time			6.5	14	ns
Qg	Total Gate Change	.,		1.1		nC
Q _{gs}	Gate-Source Change	$V_{DS} = 25V, I_{D} = 0.22A,$ $V_{GS} = 10V$		0.12		nC
Q _{gd}	Gate-Drain Change	VGS - 10V		0.22		nC
Drain-Source Diode Characteristics and Maximum Ratings						
I _S	Maximum Continuous Drain-Sour	ce Diode Forward Current			0.22	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0V, I_S = 0.44A$ (Note2)			1.4	V

Notes:

- 1. 367℃/W when mounted on a minimum pad.
- 2. Pulse Test: Pulse Width $\leq 300 \mu s, \, \text{Duty Cycle} \leq 2.0\%$

Typical Performance Characteristics

Figure 1. On-Region Characteristics.

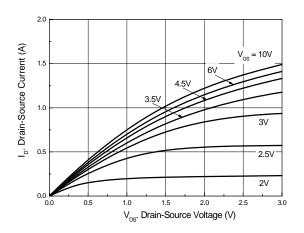


Figure 3. On-Resistance Variation with Temperature.

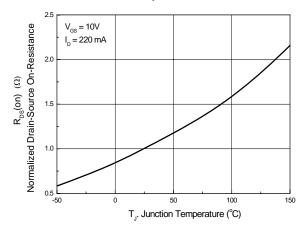


Figure 5. Drain-Source On Voltage with Temperature.

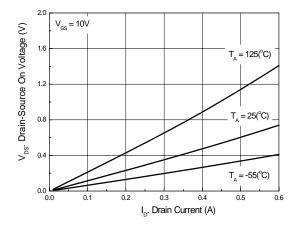


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

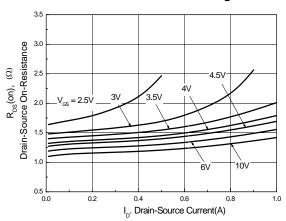


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

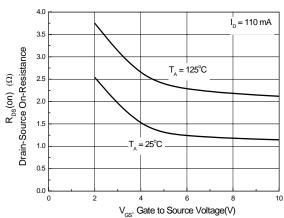
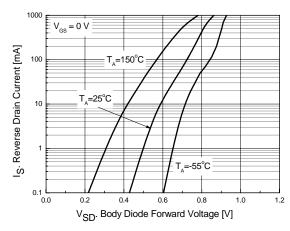



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Performance Characteristics (Continued)

Figure 7. Gate Charge Characteristics.

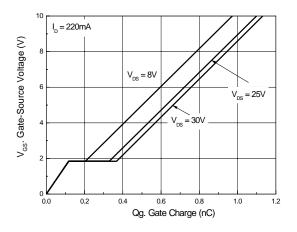


Figure 9. Maximum Safe Operating Area.

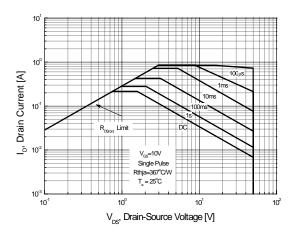


Figure 11. Transient Thermal Response Curve.

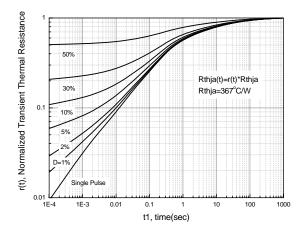
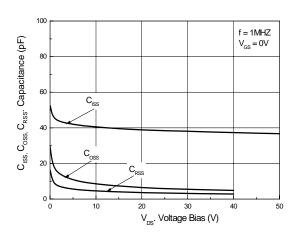
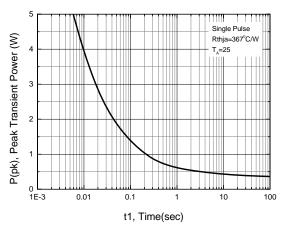
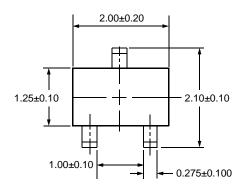
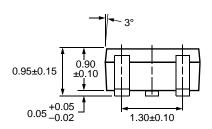


Figure 8. Capacitance Characteristics.


Figure 10. Single Pulse Maximum Power Dissipation.

Physical Dimensions

SOT-323

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 AccuPower™
 F-PFS™

 Auto-SPM™
 FRFET®

 Build it Now™
 Global Power Resource SM

 CorePLUS™
 Green FPS™

 CorePOWER™
 Green FPS™ e-Series™

 CROSSVOL™
 Gmax™

 CTL™
 GTO™

CTL™ GTO™
Current Transfer Logic™ IntelliMAX™
DEUXPEED® ISOPLANAR™
Dual Cool™ MegaBuck™
EcoSPARK® MICROCOUPLER™
EfficientMax™ MicroFET™
ESBC™ MicroPak™

Fairchild® MillerDrive™ MotionNax™ Motion-SPM™ OptoHiT™ OPTOLOGIC® FAST® OPTOLOGIC® OPTOPLANAR®

FlashWriter®*
PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET[®] QS™

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignaWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

the franchise
TinyBoost™
TinyBoost™
TinyCalc™
TinyColc™
TinyPOPTO™
TinyPOPTO™
TinyPOWAT™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™

µSerDes™
UHC®
Ultra FRFET™

SYSTEM ®

The Power Franchise®

Ser Des UHC® Ultra FRFET¹ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor,

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms				
Datasheet Identification		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. I50