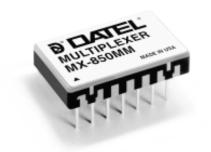


Precision, Higher-Speed 4-Channel, Analog Multiplexers

FEATURES

- 50ns settling time to ±0.01%
- 70ns settling time to ±0.003%
- 100ns settling time to ±0.001%
- · 4 Channels, single-ended inputs
- 100mW power dissipation
- Small, 14-pin DIP package


GENERAL DESCRIPTION

The MX-850 is a precision, high-speed multiplexer characterized for 10, 12, 14 and 16-bit applications. The performance benchmarks are its 50 nanosecond maximum settling time to $\pm 0.01\%$ accuracy and its unprecedented $\pm 0.001\%$ accuracy specification.

Packaged in a miniature, 14-pin, ceramic DIP, the MX-850 operates from ±15V and +5V supplies and consumes a maximum 270mW. Models are available for either 0 to +70℃ or −55 to +125℃ operation.

ON		MUX ADDRES	S
CHANNEL	EN	A ₁	A_0
Disable	1	Х	Х
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	ENABLE
2	A0
3	A1
4	CH1 INPUT
5	CH2 INPUT
6	CH3 INPUT
7	CH4 INPUT
8	OUTPUT
9	GROUND
10	+15V SUPPLY
11	GROUND
12	+5V SUPPLY
13	GROUND
14	-15V SUPPLY
1	

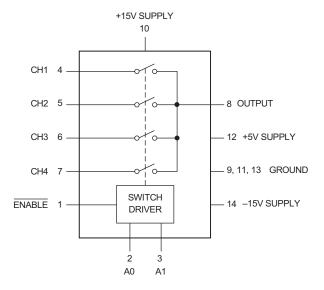


Figure 1. Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETER	LIMITS	UNITS	
+15V Supply, Pin 10	-0.5 to +16.5	Volts	
-15V Supply, Pin 14	+0.5 to -16.5	Volts	
+5V Supply, Pin 12	-0.5 to +7	Volts	
Digital Inputs, Pins 1, 2, 3	-0.5 to +6	Volts	
Analog Inputs, Pins 4, 5, 6, 7	-10.5 to +10.5	Volts	
Analog Input Current	±20	mA	
Lead temperature (10 seconds)	300	°C	
Switching Frequency/Duty Cycle	10/50	MHz/%	
Switching Frequency/Duty Cycle	10/50	IVITIZ/70	

FUNCTIONAL SPECIFICATIONS

(Apply over the operating temperature range and over the operating power supply range unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Analog Signal Range	±10	_	_	Volts
On Resistance, +25°C	_	18	90	Ohms
0 to +70°C	_	_	120	Ohms
−55 to +125°C	_	_	140	Ohms
R _{ON} versus V _{IN}		See Fi	gure 2	
Input Leakage Current (Off)				
+25°C	_	±0.02	±0.2	nA
0 to +70°C	_	_	±10	nA
−55 to +125°C	_	_	±25	nA
Output Leakage Current (Off)				
+25°C	_	±0.02	±0.2	nA
0 to +70°C	_	_	±20	nA
−55 to +125°C	_	_	±40	nA
On Channel Leakage Current				
+25°C	_	±0.4	±1	nA
0 to +70°C	_	_	±25	nA
-55 to +125°C	_	_	±35	nA
Channel Input Capacitance		,	_	
Off	_	4	6	pF
On Channel Output Canacitanes	_	10	12	pF
Channel Output Capacitance		8	10	"r
On Nonlinearity	_	0	±0.001	pF %FSR
Large signal bandwidth (–3dB)	80	100	±0.001	MHz
	00	100		IVII IZ
DIGITAL INPUTS				
Logic levels				
Logic "1"	+2.0	_	_	Volts
Logic "0"	_	_	+0.8	Volts
Logic Loading "1"	_	_	+10	μA
Logic Loading "0"		_	-10	μA
SWITCHING CHARACTERIS	STICS			
Access Time	_	_	20	ns
Break-Before-Make Delay Time	_	_	10	ns
Enable Delay (On, Off)	-	3	10	ns
Settling Time, 10M Load				
10V step to ±0.1%	-	25	30	ns
10V step to ±0.01%	_	40	50	ns
10V step to ±0.003%	-	60	70	ns
10V step to ±0.001%	-	80	100	ns
Settling Time, 5k Load				
10V step to ±0.1%	-	25	30	ns
10V step to ±0.01%	-	40	50	ns
10V step to ±0.003%	-	60	70	ns
10V step to ±0.001%	_	80	100	ns
Settling Time, 10M Load				
20V step to ±0.1%	_	30	35	ns
20V step to ±0.01%	-	50	60	ns
20V step to ±0.003% 20V step to ±0.001%	-	75 100	85 120	ns
				l ns

SWITCHING CHAR. (cont.)	MIN.	TYP.	MAX.	UNITS
Settling Time, 5k Load				
20V step to ±0.1%	_	30	35	ns
20V step to ±0.1%	_	50	60	ns
20V step to ±0.01%	_	75	85	ns
20V step to ±0.001%	_	100	120	ns
Crosstalk ①		100	1.20	110
10kHz (20Vp-p)	_	-105	-100	dB
1MHz (20Vp-p)	_	-94	-92	dB
10MHz (5Vp-p)	_	-76	_71	dB
20MHz (3Vp-p)	_	-64	-62	dB
POWER REQUIREMENTS	•		1	1
Power Supply Range				
+15V Supply	+14.5	+15	+15.5	Volts
-15V Supply	-14.5	-15	-15.5	Volts
+5V Supply	+4.75	+5	+5.25	Volts
Power Supply Current,				
Quiescent				
+15V Supply	_	+3	+4	mA
-15V Supply	–	-10	-12	mA
+5V Supply	_	+3	+3.5	mA
Power Supply Rejection Ratio	80	90	-	dB
Power Supply Dissipation,				
Quiescent				
+25°C	_	207	270	mW
0 to +70°C	_	_	270	mW
−55 to +125°C	_	_	280	mW
Pd versus Frequency		See Fi	gure 4	
PHYSICAL/ENVIRONMENTAL				
Operating Temp. Range, Case				
MX-850MC	0	_	+70	°C
MX-850MM	-55	_	+125	°C
Storage Temperature Range	-65	_	+150	°C
Package Type	14-pin, metal-sealed, ceramic DIP			
Weight	·	0.1 ounces	(2.8 grams)	

① See Figures 3a and 3b.

TECHNICAL NOTES

- Proper operation of the MX-850 multiplexer is dependent upon good board layout and connection practices. Bypass supplies as shown in the connection diagrams. Mount bypass capacitors directly to the supply pins whenever possible.
- All grounds pins (9, 11, 13) should be tied together and connected to ground as close to the multiplexer as possible.
- 3. When power is off, current limit input signals on pins 4, 5, 6, and 7 to 20mA. Failure to current limit can cause permanent damage to the device since, when powering up or down it is possible that two switches might be on at the same time. Excessive current (greater than 20mA) will flow from the more positive input to the more negative input, permanently damaging the device. Applications in which the power supply for the multiplexer also powers the signal sources may not require limiting resistors. See Figure 4.

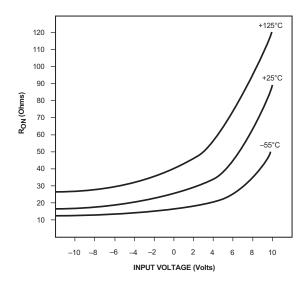


Figure 2. Channel On Resistance Versus Input Voltage

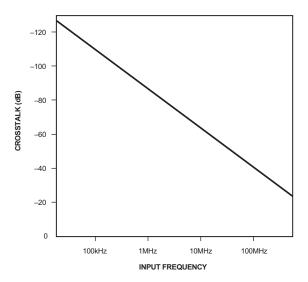


Figure 3a. Small Signal Crosstalk Versus Input Frequency

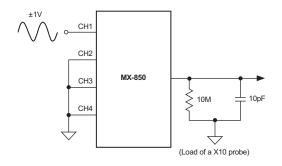


Figure 3b. Crosstalk Test Circuit



Figure 4. Power Dissipation Versus Switching Frequency

CURRENT LIMITING RESISTORS

As noted in Technical Note 3, some current limiting technique must be employed to protect the device. The following lists the suggested resistor values for the current limiting resistors shown in Figure 5.

Input Range	Limiting Resistors
±10V	$R = 500\Omega$
±5V	$R = 250\Omega$
≤±1V	No current limiting needed

Other current limiting circuits can be used, such as a current limited op amp drive, depending upon the application.

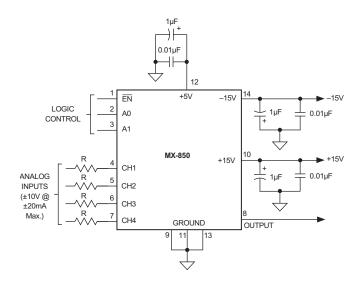


Figure 5. Typical Connections

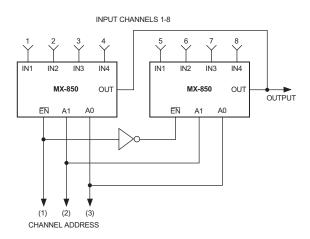
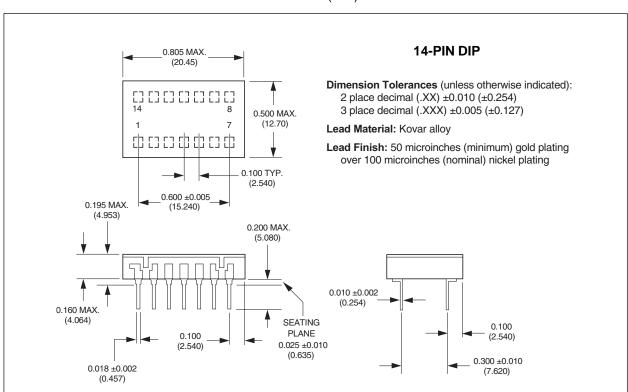


Figure 6. Cascading Multiple MX-850's

Table 2. 8 Channel Addressing


ON	М	UX ADDRE	_
CHANNEL	1	2	3
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

CHANNEL EXPANSION

The MX-850's ENABLE input provides a means of channel expansion. As shown in Figure 6 and in Table 2, multiple multiplexers may be used by using the ENABLE input as an address line.

MECHANICAL DIMENSIONS

INCHES (mm)

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	
MX-850MC	0 to +70℃	
MX-850MM	–55 to +125℃	
For availability of a high-reliability (QL) version, contact DATEL.		

DATEL, Inc., Mansfield, MA 02048 (USA) • Tel: (508) 339-3000, (800) 233-2765 Fax: (508) 339-6356 • Email: sales@datel.com • Internet: www.datel.com