

PRODUCT OVERVIEW

DATEL's ADS-941 is a functionally complete, 14-bit, 1MHz, sampling A/D converter. Its standard, 32-pin, triple-wide ceramic DIP contains a fast-settling sample/hold amplifier, a 14-bit subranging (two-pass) A/D converter, a precision reference, a three-state output register, and all the timing and control logic necessary to operate from a single start convert pulse.

The ADS-941 is optimized for wideband frequency-domain applications and is fully FFT tested. Total harmonic distortion (THD) and signal-to-noise ratio (including distortion) typically run at –85dB and 80dB, respectively, with full-scale inputs up to 100kHz.

The ADS-941 requires ± 15 V and +5V supplies and typically consumes 2.8 Watts.

	INPUT/OUTPUT CONNECTIONS					
PIN	FUNCTION	PIN	FUNCTION			
1	+10V REF. OUT	32	START CONVERT			
2	BIPOLAR	31	BIT 1 OUT (MSB)			
3	ANALOG INPUT	30	BIT 1 OUT (MSB)			
4	SIGNAL GROUND	29	BIT 2 OUT			
5	OFFSET ADJUST	28	BIT 3 OUT			
6	ANALOG GROUND	27	BIT 4 OUT			
7	OVERFLOW	26	BIT 5 OUT			
8	CODING SELECT	25	BIT 6 OUT			
9	ENABLE	24	BIT 7 OUT			
10	+5V SUPPLY	23	BIT 8 OUT			
11	DIGITAL GROUND	22	BIT 9 OUT			
12	+15V SUPPLY	21	BIT 10 OUT			
13	-15V SUPPLY	20	BIT 11 OUT			
14	ANALOG GROUND	19	BIT 12 OUT			
15	ANALOG GROUND	18	BIT 13 OUT			
16	EOC	17	BIT 14 OUT (LSB)			

FEATURES

- 14-bit resolution
- 1MHz minimum sampling rate
- Functionally complete
- Internal reference and sample/hold
- No missing codes
- Excellent performance
- Full Nyquist-rate sampling
- Small 32-pin DIP
- Low power, 2.8 Watts

BLOCK DIAGRAM

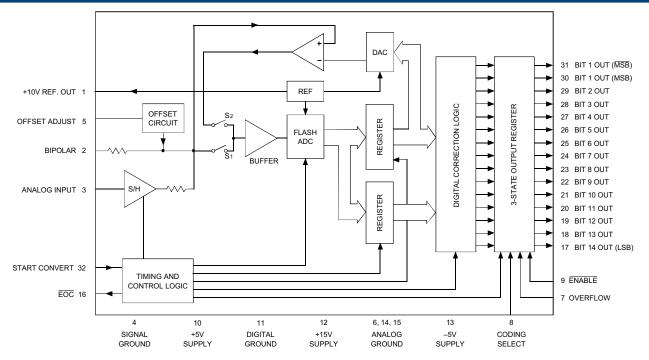


Figure 1. ADS-941 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS					
PARAMETERS	LIMITS	UNITS			
+15V Supply (Pin 12)	0 to +16	Volts			
-15V Supply (Pin 13)	0 to -16	Volts			
+5V Supply (Pin 10)	0 to +6.0	Volts			
Digital Inputs (Pin 8,9, 32)	-0.3 to +VDD +0.3	Volts			
Analog Input (Pin 3)	±15	Volts			
Lead Temp. (10 seconds)	300	°C			

FUNCTIONAL SPECIFICATIONS

(Ta = $+25^{\circ}$ C, \pm Vcc = \pm 15V \pm Vbb = +5V, 1MHz sampling rate, and a minimum 7 minute warmup \oplus unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range				
Unipolar	_	0 to +10	_	Volts
Bipolar	<u> </u>	±5	_	Volts
Input Impedence	2.2	2.5	_	kW
Input Capacitance	_	7	15	pF
DIGITAL INPUTS				
Logic Levels				
Logic "1"	+2.0	_	_	Volts
Logic "0"	_	_	+0.8	Volts
Logic Loading "1"	_	_	+10	μA
Logic Loading "0"	_	_	-600	μA
PERFORMANCE				
Integral Non-Linearity (fin = 10KHz)				
+25°C	_	±1	±2	LSB
0 to +70°C	_	±1.5	±2	LSB
−40 to +85°C	_	±2	±3	LSB
Differential Non-Linearity (fin = 10KHz)				
+25°C	-0.75	±0.5	±0.75	LSB
0 to +70°C	-0.95	±0.75	±0.95	LSB
-40 to +85°C	-1	±0.95	+2.5	LSB
Full Scale Absolute Accuracy				
+25°C	_	±0.1	±0.122	%FSR
0 to +70°C	_	±0.12	±0.36	%FSR
−40 to +85°C	_	±0.45	±0.85	%FSR
Unipolar Zero Error				
+25°C (see Figure 3)	_	±0.05	±0.122	%FSR
0 to +70°C	_	±0.1	±0.2	%FSR
−40 to +85°C	_	±0.2	±0.3	%FSR
Bipolar Zero Error				
+25°C (see Figure 3)		±0.05	±0.122	%FSR
0 to +70°C	_	±0.1	±0.2	%FSR
−40 to +85°C		±0.2	±0.3	%FSR
Bipolar Offset Error				
+25°C (see Figure 3)	_	±0.1	±0.12	%FSR
0 to +70°C	-	±0.12	±0.3	%FSR
-40 to +85°C	_	±0.5	±0.8	%FSR
Gain Error				
+25°C (see Figure 3)	-	±0.018	±0.122	%FSR
0 to +70°C	_	±0.12	±0.3	%FSR
-40 to +85°C	-	±0.6	±0.8	%FSR
No Missing Codes (fin = 500kHz)				
14 Bits		0 to -	-70°C	
Resolution		14	Bits	

OUTPUTS	MIN.	TYP.	MAX.	UNITS
Output Coding	3	Staight Bin./Offset Bin./Two's Comp. Comp. Bin./Comp. Offset Bin./C2C		
Logic Level	1			
Logic "1"	+2.4	_	I —	Volts
Logic "0"	_		+0.4	Volts
Logic Loading "1"	—		-160	μА
Logic Loading "0"	<u> </u>		+6.4	mA
Internal Reference			1	
Voltage, +25°C	+9.98	+10.0	+10.02	Volts
Drift	_	±13	±30	ppm/°(
External Current	_	_	5	mA
DYNAMIC PERFORMANCE				
Slew Rate	Ι _	±250	_	V/µs
Aperature Delay Time	<u> </u>	_	10	ns
Aperature Uncertainty	 		±10	ps
S/H Aguisition Time (to $\pm 0.003\%$ FS, 10V step	<u>)</u> —	250	350	ns
Total Harm. Distort. (–0.5dB)	7		1 000	
dc to 100kHz	-78	-85	Ι	dB
100kHz to 500kHz	-77	-80		dB
Signal-to-Noise Ratio (w/o distortion, -0.5c		00	I	l db
dc to 100kHz	75	80		dB
100kHz to 500kHz	74	77		dB
Signal-to-Noise Ratio (and distortion, -0.5c			1	l db
dc to 100kHz	74	80	Ι	dB
100kHz to 500kHz	73	78	$\vdash \equiv -$	dB
Spurious Free Dyn. Range ①	13	70		l ub
dc to 100kHz78	78	86	Ι	dB
100 to 500kHz	77	83		dB
Two-tone IMD Distortion (fin = 100kHz,	111	00	1	l db
240kHz, fs = 2.0Mhz, -0.5dB)		-85		dB
Input Bandwidth (–3dB)		00		u u u
Small Signal (–20dB input)	1 _	6		MHz
Large Signal (–0dB input)		1.75	 	MHz
Feedthrough Rejection (fin = 500KHz)		87		dB
Overvoltage Recovery, ±12V		1000	2000	ns
A/D Conversion Rate	1	1000	2000	MHz
Noise	1	250		μVrms
POWER REQUIREMENTS		230		μνιτιιδ
Power Supply Ranges				
+15V Supply	+14.25	+15.0	+15.75	Volts
–15V Supply	-14.25	-15.0	-15.75	Volts
+5V Supply	+4.75	+5.0	+5.25	Volts
Power Supply Currents	+4.73	+3.0	+3.23	VUILS
+15V Supply		+62	+85	mA
–15V Supply		-80	-105	mA
+5V Supply			+185	
Power Dissipation		+140 2.8	3.5	mA Watts
Power Supply Rejection	+	2.0		
			±0.02	%FSR%
PHYSICAL/ENVIRONMENTAL Operating Tomp, Penge, Coope				
Operating Temp. Range, Case	1 0		. 70	00
ADS-941MC	0		+70	°C
ADS-941ME	-40 65	_	+85	°C
Storage Temperature Range	-65	_	+150	°C
Package Type	00		aled, ceram	:- TDID

Footnote:

① Same specification as In-Band Harmonics and Peak Harmonics.

TECHNICAL NOTES

- Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected to each other internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V REF. OUT (pin 1) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1μF ceramic capacitor.
- 3. CODING SELECT (pin 8) is compatible with CMOS/TTL logic levels for those users desiring logic control of this function. The device has an internal pull-up resistor on this pin, allowing pin 8 to be connected to +5V or left open when a logic 1 is needed. See the Calibration Procedure for selecting an output coding.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).

CALIBRATION PROCEDURE

 Connect the converter per Figure 3 and Table 1 for the appropriate input range. Apply a pulse of 50 nanoseconds minimum to START CONVERT (pin 32) at a rate of 200kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

3. Full-Scale Adjustment

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 +10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

Table 1. Input Connections

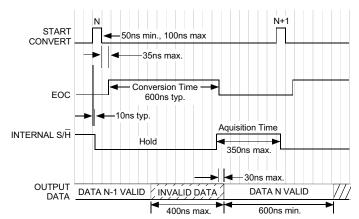

INPUT RANGE	ZERO ADJUST +½ LSB	GAIN ADJUST FS –1½ LSB
0 to +10V	+305µV	+9.999085V
±5V	+305µV	+4.999085V

Table 2. Zero and Gain Adjustments

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (TA = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electricallyinsulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

Scale is approximately 50ns per division

Figure 2. ADS-941 Timing Diagram

Removing System Errors

Use external potentiometers to remove system errors or to reduce the small initial errors to zero. Use a 100W trimpot in series with the analog input for gain adjustment. Use a fixed 50W resistor instead of the trimpot for operation without adjustment. Use a 20kW trimpot with the wiper tied to OFFSET ADJUST (pin 5) for zero/offset adjustment. Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment.

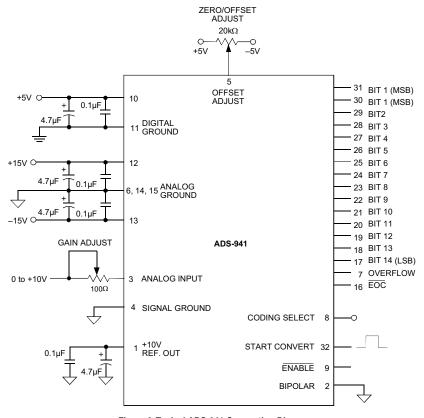


Figure 3. Typical ADS-941 Connection Diagram

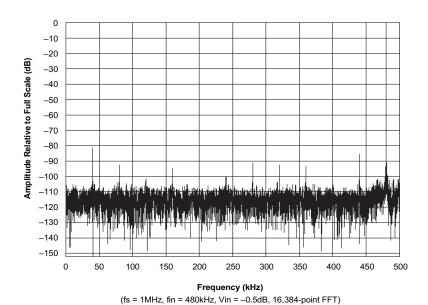
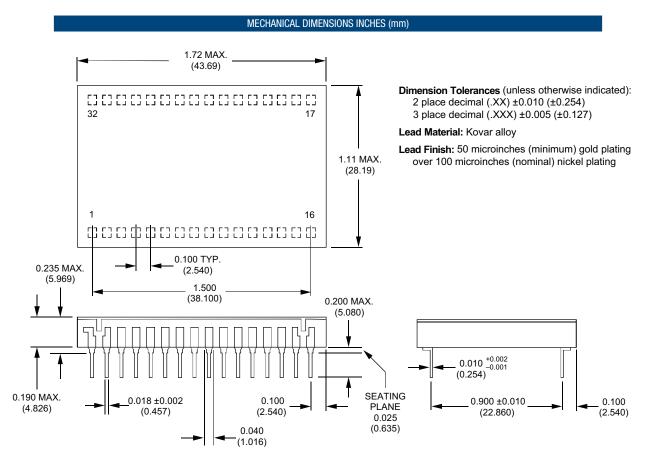



Figure 4. ADS-941 FFT Analysis

		STRAIGHT BINARY	COMP. BINARY			
UNIPOLAR	INPUT RANGE	OUTPUT CODING			INPUT RANGE	BIPOLAR
SCALE	0 to +10V	MSB LSB	MSB LSB	MSB LSB	±5V	SCALE
+FS – 1 LSB	+9.999390	11 1111 1111 00 0000 0000 0000		01 1111 1111 1111	+4.999390	+FS – 1LSB
+7/8 FS	+8.750000	11 1000 0000 0000	00 0111 1111 1111	01 1000 0000 0000	+3.750000	+3/4FS
+3/4 FS	+7.500000	11 0000 0000 0000	00 1111 1111 1111	01 0000 0000 0000	+2.500000	+1/2FS
+1/2 FS	+5.000000	10 0000 0000 0000	01 1111 1111 1111	00 0000 0000 0000	0.000000	0
+1/4 FS	+2.500000	01 0000 0000 0000	10 1111 1111 1111	11 0000 0000 0000	-2.500000	-1/2FS
+1/8 FS	+1.250000	00 1000 0000 0000	11 0111 1111 1111	10 1000 0000 0000	-3.750000	-3/4FS
+1 LSB	+0.000610	00 0000 0000 0001	11 1111 1111 1110	10 0000 0000 0001	-4.999390	-FS+1LSB
0	0.000000	00 0000 0000 0000	11 1111 1111 1111	10 0000 0000 0000	-5.000000	–FS
		OFFSET BINARY	COMP. OFF. BIN.	TWO'S COMP.		

Table 3. Output Coding

ORDERING INFORMATION					
MODEL Number	OPERATING TEMP. RANGE	ACCESSORIES			
ADS-941MC	0 to +70°C	ADS-B916/917	Evaluation Board (without ADS-942)		
ADS-941ME	-40 to +85°C	HS-24	Heat Sink for all ADS-942 models		
Receptacles for PC mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 32 required.					

DATEL is a registered trademark of Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2011 Murata Power Solutions, In