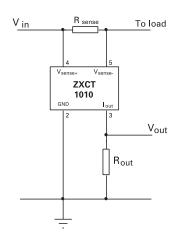
ENHANCED HIGH-SIDE CURRENT MONITOR

DESCRIPTION

The ZXCT1010 is a high side current sense monitor. Using this device eliminates the need to disrupt the ground plane when sensing a load current.

It is an enhanced version of the ZXCT1009 offering reduced typical output offset and improved accuracy at low sense voltage.

The wide input voltage range of 20V down to as low as 2.5V make it suitable for a range of applications. A minimum operating current of just $4\mu A,$ combined with its SOT23-5 package make suitable for portable battery equipment.


FEATURES

- Low cost, accurate high-side current sensing
- · Output voltage scaling
- Up to 2.5V sense voltage
- 2.5V 20V supply range
- 300nA typical offset current
- 3.5µA quiescent current
- 1% typical accuracy
- SOT23 -5 package

APPLICATIONS

- · Battery chargers
- Smart battery packs
- DC motor control
- Over current monitor
- Power management
- Programmable current source

APPLICATION CIRCUIT

ORDERING INFORMATION

DEVICE	REEL	TAPE	QUANTITY PER
	SIZE	WIDTH	REEL
ZXCT1010E5TA	7″	8mm	3,000 units

PARTMARK 101 PACKAGE SOT23-5

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin -0.6V to 20V (relative to GND)

Operation above the absolute maximum rating may cause device failure.

Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

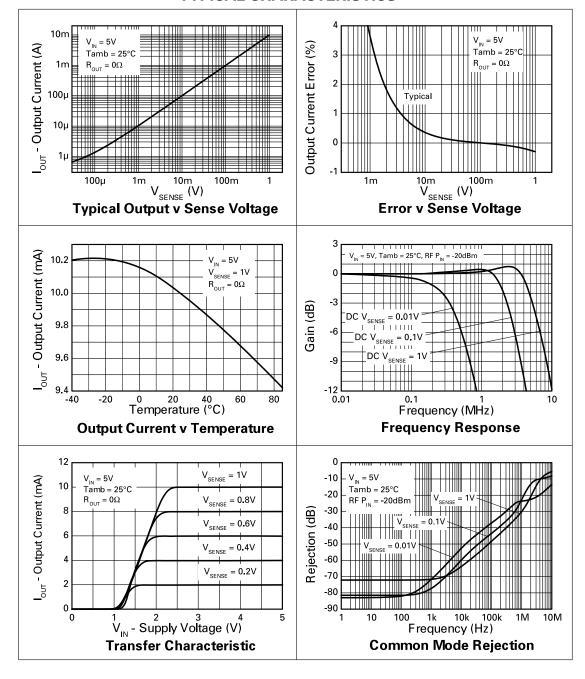
ELECTRICAL CHARACTERISTICS

Test Conditions $T_A = 25^{\circ}C$, $V_{in} = 5V$, $R_{out} = 100\Omega$.

SYMBOL PARAM	PARAMETER	CONDITIONS	LIMITS			UNIT
			Min	Тур	Max	
V _{in}	V _{CC} Range		2.5		20	V
I _{out} 1	Output current	V _{sense} = 0V	0	0.3	10	μА
		V _{sense} = 10mV	85	100	115	μΑ
		V _{sense} = 100mV	0.975	1.00	1.025	mA
		V _{sense} = 200mV	1.95	2.00	2.05	mA
		V _{sense} = 1V	9.7	10.0	10.3	mA
Iq	Ground pin current	V _{sense} = 0V		3.5	8	μА
V _{sense} ²	Sense Voltage		0		2500	mV
I _{sense} -	V _{sense} - input current				100	nA
Acc	Accuracy	$R_{sense} = 0.1\Omega$				
		V _{sense} = 200mV	-2.5		2.5	%
Gm	Transconducta nce,			10000		μA/V
	I _{out} / V _{sense}					
BW	Bandwidth	V _{SENSE(DC)} = 10mV, Pin = -40dBm ‡		300		kHz
		V _{SENSE(DC)} = 100mV, Pin = -20dBm ‡		2		MHz

¹ Includes input offset voltage contribution

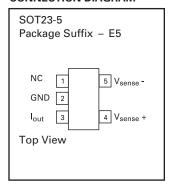
VSENSE = VSENSE+ - VSENSE-= VIN - VLOAD

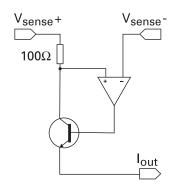

= I_{LOAD} x R_{SENSE}

 3 -20dBm=63mVp-p into 50 Ω

 $^{^2\,}V_{SENSE}$ is defined as the differential voltage between V_{SENSE+} and V_{SENSE-}

TYPICAL CHARACTERISTICS

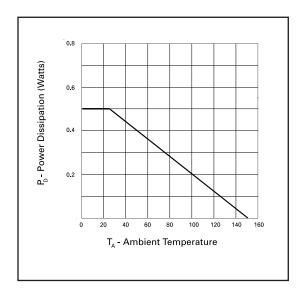



PIN DESCRIPTION

Pin Name	Pin Function
V _{sense} +	Supply voltage
V _{sense} -	Connection to load/battery
l _{out}	Output current, proportional to V _{in} -V _{load}
GND	Ground

CONNECTION DIAGRAM

SCHEMATIC DIAGRAM


POWER DISSIPATION

The maximum allowable power dissipation of the device for normal operation (Pmax), is a function of the package junction to ambient thermal resistance (θ ja), maximum junction temperature (Tjmax), and ambient temperature (Tamb), according to the expression:

$$P_{max} = (Tj_{max} - T_{amb}) / \theta_{ja}$$

The device power dissipation, P_D is given by the expression:

P_D=I_{out}.(V_{in}-V_{out}) Watts

APPLICATIONS INFORMATION

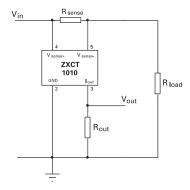
The following lines describe how to scale a load current to an output voltage.

$$V_{sense} = V_{in} - V_{load}$$
 $V_{out} = 0.01 \times V_{sense} \times R_{out}^{1}$

E.g.

A 1A current is to be represented by a 100mV output voltage:

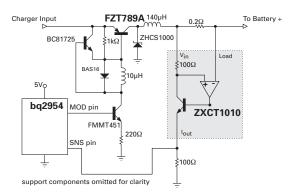
1)Choose the value of R_{sense} to give $50 \, mV > V_{sense} > 500 \, mV$ at full load.


For example V_{sense} = 100mV at 1.0A. R_{sense} = 0.1/1.0 => 0.1 ohms.

2)Choose R_{out} to give V_{out} = 100mV, when V_{sense} = 100mV.

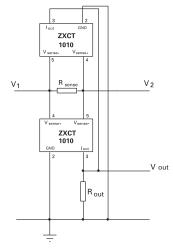
Rearranging 1 for R_{out} gives: R_{out} = V_{out} /(V_{sense} x 0.01)

 R_{out} = 0.1 / (0.1 x 0.01) = 100 Ω


TYPICAL CIRCUIT APPLICATION

Where R_{load} represents any load including DC motors, a charging battery or further circuitry that requires monitoring, R_{sense} can be selected on specific requirements of accuracy, size and power rating.

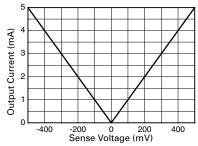
APPLICATIONS INFORMATION (Continued)



Li-Ion Charger Circuit

The above figure shows the ZXCT1010 supporting the Benchmarq bq2954 Charge Management IC. Most of the support components for the bq2954 are omitted for clarity. This design also uses the Zetex FZT789A high current Super- β PNP as the switching transistor in the DC-DC step down converter and the FMMT451 as the drive NPN for the FZT789A. The circuit can be configured to charge up to four Li-lon cells at a charge current of 1.25A. Charge can be terminated on maximum voltage, selectable minimum current, or maximum time out. Switching frequency of the PWM loop is approximately 120kHz.

Bi-Directional Current Sensing

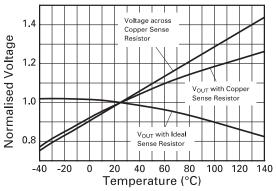

The ZXCT1010 can be used to measure current bi-directionally, if two devices are connected as shown below.

If the voltage V1 is positive with respect to the voltage V2 the lower device will be active, delivering a proportional output current to Rout. Due to the polarity of the voltage across Rsense, the upper device will be inactive and will not contribute to the current delivered to Rout. When V2 is more positive than V1, current will be flowing in the opposite direction, causing the upper device to be active instead.

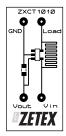
Non-linearity will be apparent at small values of Vsense due to offset current contribution. Devices can use separate output resistors if the current direction is to be monitored independently.

Bi-directional Transfer Function

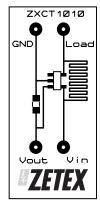
Output Current v Sense Voltage



APPLICATIONS INFORMATION (Continued)


PCB trace shunt resistor for low cost solution

The figure below shows output characteristics of the device when using a PCB resistive trace for a low cost solution in replacement for a conventional shunt resistor. The graph shows the linear rise in voltage across the resistor due to the PTC of the material and demonstrates how this rise in resistance value over temperature compensates for the NTC of the device.


The figure opposite shows a PCB layout suggestion. The resistor section is 25mm x 0.25mm giving approximately $150m\Omega$ using 1oz copper. The data for the normalised graph was obtained using a 1A load current and a 100Ω output resistor. An electronic version of the PCB layout is available at www.zetex.com/isense

Effect of Sense Resistor Material on Temperature Performance

Actual Size

Layout shows area of shunt resistor compared to SOT23-5 package. Not actual size

Definitions

Product change

Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer

The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support

Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:

- A. Life support devices or systems are devices or systems which:
- 1. are intended to implant into the body
- or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions
 - for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction

The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions

All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office.

Quality of product

Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.

To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork

Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)

Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

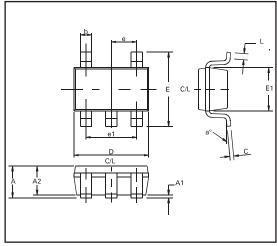
Green compliance

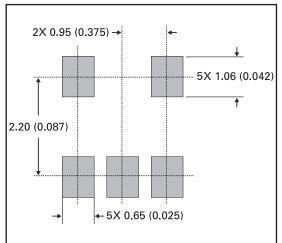
Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:

- "Preview"Future device intended for production at some point. Samples may be available
- "Active"Product status recommended for new designs
- "Last time buy (LTB)"Device will be discontinued and last time buy period and delivery is in effect
- "Not recommended for new designs"Device is still in production to support existing designs and production
- "Obsolete"Production has been discontinued


Datasheet status key:


- "Draft version"This term denotes a very early datasheet version and contains highly provisional
- information, which may change in any manner without notice.
- "Provisional version"This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to

PACKAGE DIMENSIONS

PAD LAYOUT DETAILS

Controlling dimensions are in millimeters. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	Millin	neters	Inc	hes	DIM	Millimeters		Inches	
	MIN	MAX	MIN	МАХ		MIN	MAX	MIN	MAX
А	0.90	1.45	0.035	0.057	Е	2.60	3.00	0.102	0.118
A1	0.00	0.15	0.00	0.006	E1	1.50	1.75	0.059	0.069
A2	0.90	1.3	0.035	0.051	е	0.95 REF		0.037 REF	
b	0.35	0.50	0.014	0.020	e1	1.90 REF		0.075 REF	
С	0.09	0.20	0.0035	0.008	L	0.10	0.60	0.004	0.024
D	2.80	3.00	0.110	0.118	a°	0	10	0	10

© Zetex Semiconductors plc 2007

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH Kustermann-Park Balanstraße 59 D-81541 München Germany	Zetex Inc 700 Veterans Memorial Hwy Hauppauge, NY 11788 USA	Zetex (Asia) Ltd 3701-04 Metroplaza Tower 1 Hing Fong Road, Kwai Fong Hong Kong	Zetex Semiconductors plc Zetex Technology Park Chadderton, Oldham, OL9 9LL United Kingdom
Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 europe.sales@zetex.com	Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com	Telephone: (852) 26100 611 Fax: (852) 24250 494 asia.sales@zetex.com	Telephone (44) 161 622 4444 Fax: (44) 161 622 4446 hq@zetex.com

