

AUTOMOTIVE CURRENT TRANSDUCER HAB 100-S/SP1

Introduction

The HAB Family is best suited for DC, AC or pulsed currents measurement in high power and low voltage automotive applications. It's contains galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

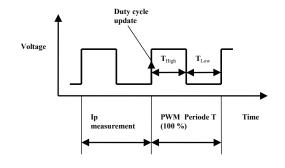
The HAB family gives you a choice of having different current measuring ranges in the same housing (from \pm 20 A up to \pm 100 A).

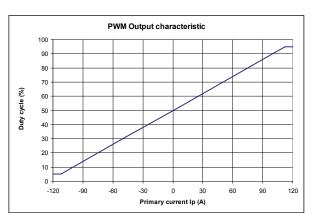
Features

- · Open Loop transducer using the Hall effect sensor
- · Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range ± 100 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T° < + 150°C
- Operating temperature range: 40°C < T° < + 125°C
- Output voltage: full ratiometric (in sensitivity and offset).

Advantages

- Good accuracy for high and low current range
- Good linearity
- Low thermal offset drift
- Low thermal gain drift
- Hermetic package.

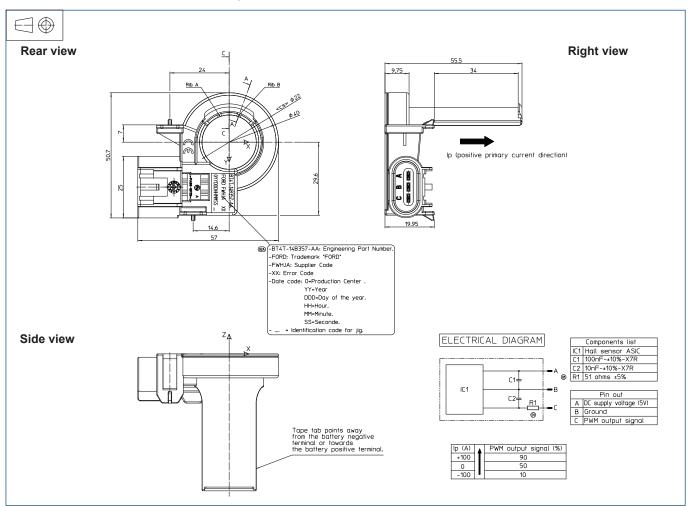

Automotive applications


- Battery Pack Monitoring
- Hybrid Vehicles
- EV and Utility Vehicles.

Principle of HAB xxx-S Family

The transducer uses open loop Hall effect technology. It provides a Pulse Width Modulated output signal proportional to the magnetic induction B generated by the primary current $I_{\rm p}$ to be measured.

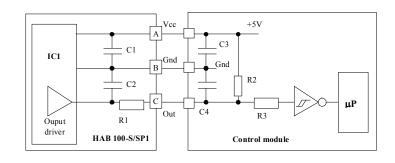
The **PWM** principle is described as follow:


$$\begin{split} \textit{PWM period} \quad & T_{\textit{Period}} = T_{\textit{High}} + T_{\textit{Low}} \\ & \textit{PWM frequency} = \frac{1}{T_{\textit{Period}}} = 125\textit{Hz} \\ & \text{DutyCycle(\%)} = \frac{T_{\textit{High}}}{T_{\textit{Period}}} \times 100 \\ & \text{DutyCycle(\%)} = 50\% + \text{G} \times \text{I}_{\textit{P}} \text{ with G = Sensitivity (\%/A)} \end{split}$$

The **PWM** period T_{period} starts on the rising edge of the output signal. The ouput signal of the duty cycle given during the T_{period} is the image of the primary current during the T_{period} -1 period.

HAB 100-S/SP1

Dimensions HAB 100-S/SP1 family (in mm.)


Bill of materials

Plastic case
 Technyl A218V25 black

Magnetic core FeNi alloy

Pins Brass tin plated

m 24.5 g

	HAB 100 components		Control module components					
IC1	Hall sensor ASIC	C3	100 nF X7R					
C1	100 nF X7R	C4	1 nF X7R	Optional				
C2	10 nF X7R	R2	4.7 kΩ	Optional				
R1	51 Ω	R3	High impedance protection	Optional				

The optional components are needed if current sensor is outside the control module circuit.

HAB 100-S/SP1

Absolute maximum ratings (not operating)

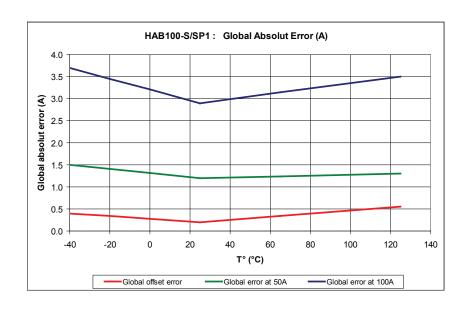
PARAMETER	Symbol	Min	Max	Unit
Maximum primary current	I _P		Infinite	А
Supply voltage	V	- 8.5	8.5	V
Supply voltage (over voltage t < 1 min)	V _C	- 14	14	V
Current consumption (t < 1 min)	I _C		50	mA
Output voltage (t < 1 min)	V _{out}	- 5	14	V
Output voltage over supply voltage	V _{out} -V _C		2	V
Output current	l _{out}	- 10	10	mA
Output short-circuit duration	t _c		10	min
Ambiant storage temperature	T _s	- 40	125	°C

Operating conditions

PARAMETER	Symbol	Min	Typical	Max	Unit
Supply voltage	V _c	4.5	5.00	5.5	V
Supply voltage (accurate range)	V _C	4.75	5.00	5.25	V
Pull up load resistor	R _L	2.2	4.7		ΚΩ
Capacitive loading	C _L			1	nF
Ambient operation temperature	T _A	- 40	25	125	°C
Ambient operation temperature (accurate range)	T _A	- 10	25	65	°C

Operating characteristics

PARAMETER	Symbol	Min	Typical	Max	Unit
Primary current nominal range	I _{PN}	-100		100	А
Maximum current measuring range (clamping)	I _{PM}	-112		112	А
Current consumption	I _c	-	7.5	10	mA
Output PWM frequency	f _{PWM}	105	125	145	Hz
Output duty cycle sensitivity	G		0.4		%/A
Output duty cycle @ I _P = 0			50		%
Output duty clamping low	D _{OUT}	4	5	6	%
Output duty clamping high		94	95	96	%
Duty cycle resolution			0.0125		%
Power-up time to reach valid duty cycle				25	ms
Setting time after over load				25	ms
Output voltage high (pull up = 4.7 K Ω)	V _{OUTH}	V _c -0.2			V
Output voltage low (pull up = $4.7 \text{ K}\Omega$)	V _{OUTL}			0.2	V
Output internal resistance	R _{out}		50	100	Ω
Ouput PWM rise time	t _{rise}			10	μs
Ouput PWM fall time	t _{fall}			10	μs


HAB 100-S/SP1

Accuracy

PARAMETER	Symbol	Unit	Specification Min	Typical	Max	Conditions			
PERFORMANCE DATA									
Electric Offset Current @ 25 °C	I _{OE}	А		± 0.05		@ T _A = 25°C			
Magnetic Offset Current @ 25 °C	I _{OM}	Α		± 0.05		@ T _A = 25°C			
	I _o	А		± 0.10		@ T _A = 25°C			
Global offset current				± 0.15		@ - 20°C < T° < 65°C			
				± 0.3		@ - 40°C < T° < 125°C			
				± 0.2		@ T _A = 25°C			
Sensitivity error	E _G	%		± 0.7		@ - 20°C < T° < 65°C			
				± 1.5		@ - 40°C < T° < 125°C			
Linearity @ -80A < Ip < 80A	ε_	%		0.2					
Linearity @ -100< Ip < -80A or 80A < Ip< 100A				1		of full range, @ T _A = 25°C			

Global error table

	Symbol	Unit	Temperature T° (°C)					
Global error (A)			-40°C	-20°C	0°C	25°C	65°C	125°C
Global offset error		^	± 0.40	± 0.34	± 0.28	± 0.20	± 0.34	± 0.55
Global error at 50A	^	Α	± 1.50	± 1.41	± 1.32	± 1.20	± 1.24	± 1.30
Global error at 100A			± 3.70	± 3.45	± 3.21	± 2.90	± 3.14	± 3.50

