

Current Transducer LT 505-S/SP8

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

16291

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s Primary current, meas Measuring resistance		720 0 ± 140 R _{M min}	00 A R _{M max}
	with ± 15 V	@ ± 720 A max	0	48 Ω
		@ \pm 1400 A _{max}	0	3 Ω
I_{SN}	Secondary nominal r.m.s. current		144	m A
\mathbf{K}_{N}	Conversion ratio		1:5000	
v _c	Supply voltage (±5%)		±15	V
Ic	Current consumption		30 + I _s	mA
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6	kV
V _b	R.m.s. rated voltage ¹⁾ ,	basicisolation	3500	V

Accuracy - Dynamic performance data

\mathbf{E}_{L}^{G}	Overall accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A}=25^{\circ}\mathrm{C}$ Linearity		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_o	- 40 °C + 70 °C		Max ± 0.4 ± 0.8	
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

T _A	Ambientoperatingtemperature	- 40 + 70	°C
T _s	Ambientstoragetemperature	- 40 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ $\mathbf{T}_{A} = 70 ^{\circ}\mathrm{C}$	45	Ω
m	Mass	600	g
	Standards	EN 50155	

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

²⁾ With a di/dt of 100 A/µs.

$I_{PN} = 720 A$

Features

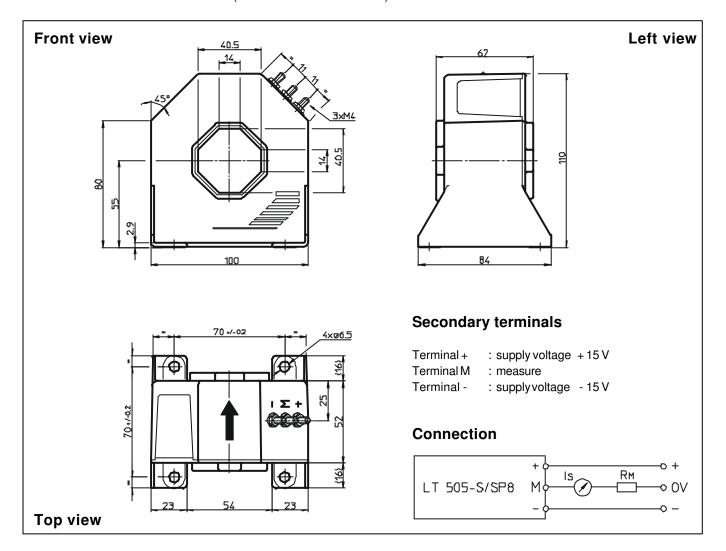
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- **I**_{PN} = 720 A
- $I_p = 0 .. \pm 1400 A$
- $V_{C} = \pm 15 (\pm 5 \%) V$
- **T**_A = -40 °C .. + 70 °C
- Connection to secondary circuit on M4threaded studs
- · Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070426/4

Dimensions LT 505-S/SP8 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Primarythrough-hole

• Connection of secondary Fastening torque

± 0.5 mm

4 holes Ø 6.5 mm

40.5 x 40.5 mm

M4threaded studs

1.2 Nm or .88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 ℃
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.