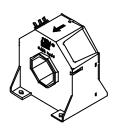


Current Transducer LT 505-S/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



720 A

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		720 0 \pm 1400 $\mathbf{R}_{\text{M min}}$ $\mathbf{R}_{\text{M max}}$		A A
	with ± 15 V	@ ± 720 A _{max}	0	40	Ω
		@ ±1150 A _{max} 1)	0	5	Ω
	with ± 24 V	@ \pm 720 A _{max}	10	90	Ω
		@ ±1400 A _{max}	10	23	Ω
I _{SN}	Secondary nominal r.m.s. current		144		m A
K _N	Conversion ratio		1:5000	0	
v c	Supply voltage (± 5 %)		± 15 :	24	V
I _C	Current consumption		30(@±	$30(@\pm 24V)+I_{s} mA$	
$\dot{\mathbf{V}}_{d}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6	·	k۷
V _b	R.m.s. rated voltage 2), safe separation				V
ž	basic isolation				V

Accuracy - Dynamic performance data

\mathbf{E}_{L}^{G}	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity error		± 0.5 < 0.1		% %
I _O	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 25 °C + 70 °C - 40 °C + 80 °C		Max ± 0.4 ± 0.3 ± 0.8	
t _r di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs Α/μs kHz

General data

T _A T _S R _S m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ T _A = 80 °C Mass Standards	- 40 + 80 - 50 + 85 52 600 EN 50155	g Ω ℃
	Standards	EN 50155	

Notes: 1) Maximum measurable current @ $V_C = \pm 15 \text{ V } (\pm 5 \%), R_M = 5 \Omega$

- 2) Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) With a di/dt of 100 A/µs.

Features

- · Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

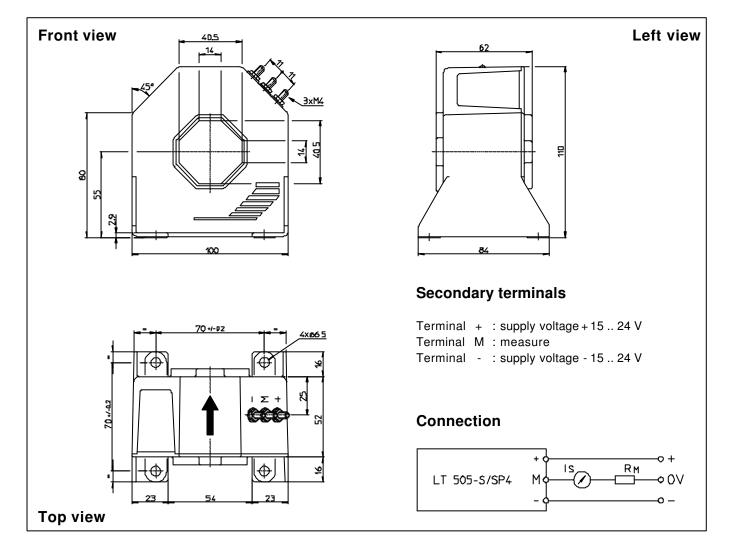
Special features

- I_{PN} = 720 A
- $\mathbf{I}_{P}^{-} = 0 .. \pm 1400 \text{ A}$ $\mathbf{T}_{A}^{-} = -40 \,^{\circ}\text{C} .. + 80 \,^{\circ}\text{C}$
- Railway equipment
- · Connection to secondary circuit on M4 threaded studs.

Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- · AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070426/5

www.lem.com

Dimensions LT 505-S/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque
- ± 0.5 mm
- 4 holes \varnothing 6.5 mm
- 40.5 x 40.5 mm
- M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.