

1000 A

Current Transducer LT 1005-T/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ + 24 V Measuring resistance @		$ \begin{array}{c} 1000 \\ 0 + 2000 \\ \mathbf{T}_{A} = 70 ^{\circ}\text{C} \\ \mathbf{R}_{M \text{min}} \mathbf{R}_{M \text{max}} \end{array} $				
	avec ± 15 V	$@ \pm 1000 A_{max}$	0	24	0	21	Ω
		@ ± 1500 A max	0	7	0	4	Ω
	avec ± 24 V	@ ± 1000 A max	5	58	10	55	Ω
		@ ± 2000 A max	5	16	10	13	Ω
I_{SN}	Secondary nominal r.m.s. current			25	0		m A
K _N	Conversion ratio			1:	4000		
V _C	Supply voltage (± 5 %)			± 1	5 24	1	V
I _c	Current consumption			30	(@±24	V)+ I _s	m A
\mathbf{V}_{d}	R.m.s. voltage for AC isol	ation test, 50 Hz, 1 m	ın	12		. 3	k۷

Accuracy - Dynamic performance data

$\overset{\boldsymbol{X}_{G}}{\boldsymbol{\epsilon}_{L}}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25 °C Linearity		± 0.4 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_0	- 25°C + 85°C - 40°C 25°C	Тур ± 0.25	Max ± 0.50 ± 0.70 ± 0.80	m A m A m A
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs Α/μs kHz

General data

T_A	Ambient operating temperature		- 40 + 85	°C
$T_{_{S}}$	Ambient storage temperature		- 40 + 95	°C
\mathbf{R}_{s}	Secondary coil resistance @	T _A = 70 °C	26	Ω
		T _A = 85 °C	29	Ω
m	Mass		1.2	kg
	Standards		EN 50155	

Features

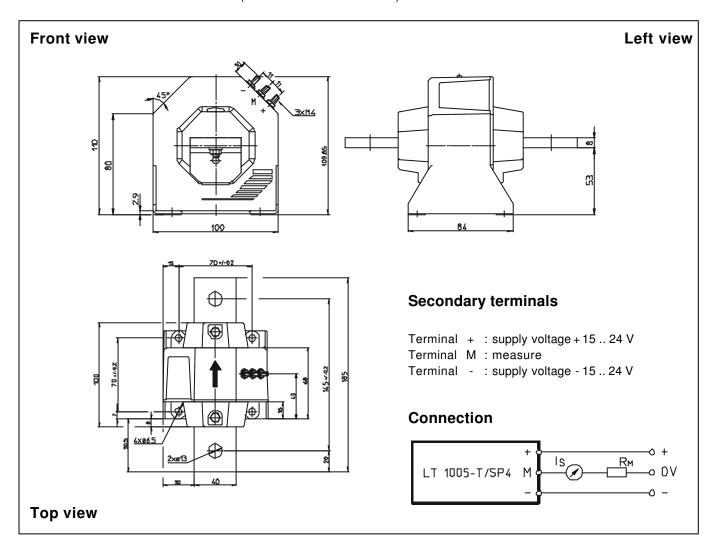
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_C = \pm 15 ... 24 (\pm 5 \%) V$
- $\mathbf{K}_{N} = 1:4000$
- $V_d = 12 \text{ kV}$
- **T**_A = -40 °C .. + 85 °C
- Potted
- Connection to secondary circuit on 3 M4 threaded studs.
- · Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- · AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Notes: 1) With a di/dt of 100 A/μs.

Dimensions LT 1005-T/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Connection of secondary Fastening torque ± 0.5 mm

4 holes Ø 6.5 mm or by the primary bar M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.