

Current Transducer LT 1005-S/SP29

 $I_{PN} = 1000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

E	tri	<u>^</u>	l da	ta
	 		1111	-

I _{PN} I _P	Primary nominal Primary current.	r.m.s. current measuring rang	e			1000 0 ±		0	A A
\mathbf{R}_{M}	Measuring resist		$T_{\Delta} = 7$	0°C		Τ,	<u> </u>	5℃	
IVI	•		R _{M min}			,		$\mathbf{R}_{ ext{M max}}$	
	with ± 15 V	@ ± 1300 A _{max}	0	10	@ ± 1250) A 1)	0	10	Ω
		@ ± 1400 A max	0	7			0	5	Ω
		@ ± 1500 A max	0	4	@ ± 1450) A 1)	0	3	Ω
	with ± 24 V	@ ± 2200 A max	0	10	@ ± 2100) A 1)	3	10	Ω
		@ ± 2300 A _{max}	0	7			3	5	Ω
		$@ \pm 2400 A_{max}$	0	5			3	3	Ω
$\mathbf{I}_{\mathtt{SN}}$	Secondary nomi	inal r.m.s. curren	it			200			mΑ
K _N	Conversion ratio)				1:50	000		
V_{c}	Supply voltage	(± 5 %)				± 15	24	ļ	V
I_{c}	Current consumption $30 (@\pm 24 V) + I_S m$				mΑ				
\mathbf{V}_{d}	R.m.s. voltage for	or AC isolation te	st, 50 l	Hz, 1 r	mn	122)			kV
						$1.5^{3)}$			kV
$V_{_{ m e}}$	R.m.s. voltage for	or partial discharg	e extin	ction (@ 10 pC	4.1			kV

Accuracy - Dynamic performance data

	, , , , , , , , , , , , , , , , , , , ,				
\mathbf{x}_{G}	Overall accuracy @ $I_{PN_{A}}$ $T_{A} = 25 ^{\circ}\text{C}$ Linearity error		± 0.5 < 0.1		%
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 40 °C + 85 °C	Тур ±0.1	Max ±0.25 ±0.50	mA mA
t, di/dt f	Response time 4) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC	150	μs Α/μs kHz

General data

T _Δ	Ambient operating temperature		- 40 + 85	℃
\mathbf{T}_{s}^{n}	Ambient storage temperature		- 50 + 85	${\mathfrak C}$
$\mathbf{R}_{\mathrm{s}}^{\mathrm{r}}$	Secondary coil resistance @	$T_A = 70 ^{\circ}\text{C}$	40	Ω
Ü		T _A = 85 °C	42	Ω
m	Mass		700	g
	Standards ⁵⁾		EN 50155	

Notes: 1) I_{Pmax} @ +85 °C & customer measuring resistance. 2) Between primary and secondary + internal shield + screened cable. 3) Between secondary and internal shield + screened cable. 4) With a di/dt of 100 A/μs 5) A list of corresponding tests is available.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

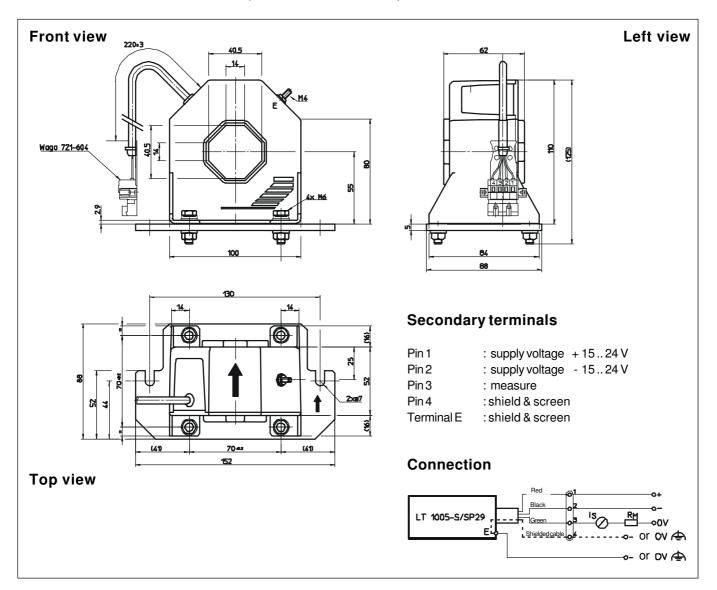
Special features

- $I_p = 0 .. \pm 2400 A$
- $V_C = \pm 15 ... 24 V (\pm 5 \%)$
- $V_d = 12 \, kV$
- $T_A = -40 \,^{\circ}\text{C} .. + 85 \,^{\circ}\text{C}$
- Secondary connection on screened cable and Wago 721-604 connector
- Shield between primary and secondary connected to the cable screening and to 4 pin of connector
- Railway equipment
- · Customer marking.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060829/1

page 1/2

Dimensions LT 1005-S/SP29 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Fastening

Primary through-holeConnection of secondary

± 0.5 mm

4 holes \varnothing 6.5 mm

40.5 x 40.5 mm

Wago 721-604 connector

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.