

Current Transducer LT 1005-S/SP26

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P Î _P R _M	-		A	$ \begin{array}{c c} 1000 \\ 0 \pm 2800 \\ 20 \\ \mathbf{T}_{A} = 70 ^{\circ} \mathbf{C} & \mathbf{T}_{A} = 85 ^{\circ} \mathbf{C} \\ \mathbf{R}_{M \min} \mathbf{R}_{M \max} & \mathbf{R}_{M \min} \mathbf{R}_{M \max} \end{array} $			A A kA
	with ± 24 V	@ ± 1000 A max @ ± 2000 A max @ ± 2800 A max	2 2 2	60 16 3.6		14.5	Ω Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio			250 1 : 4000			mΑ
V _C	Supply voltage (± 3 %)			± 2	4		٧
I _c	Current consumption			30-	⊦ l s		mΑ
V _d	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 m	nn	6	Ü		kV

Accuracy - Dynamic performance data


$oldsymbol{\epsilon}_{\scriptscriptstyle{L}}^{\scriptscriptstyle{G}}$	Overall accuracy @ $\mathbf{I}_{\text{PN},}$ \mathbf{T}_{A} = 25 °C Linearity	± 0.4 < 0.1		% %
I _O	Offset current @ $\mathbf{I}_{\rm P}$ = 0, $\mathbf{T}_{\rm A}$ = 25 °C Thermal drift of $\mathbf{I}_{\rm O}$	± 0.35	Max ± 0.50 ± 0.80 ± 0.30 ± 0.70	mA mA mA
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 50 DC 1	150	μs Α/μs kHz

General data

Ambient operating temperature		- 40 + 85	°C
Ambient storage temperature		- 45 + 95	°C
Secondary coil resistance	@ T _A = 70 °C	28	Ω
	@ T _A = 85 ℃	29.5	Ω
Mass	~	600	g
Standards		EN 50155 : 19	95
	Ambient storage temperature Secondary coil resistance Mass	Ambient storage temperature Secondary coil resistance	Ambient storage temperature $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

Notes : 1) Measuring range limited to \pm 2680 A@ T_A = 85°C

1000 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

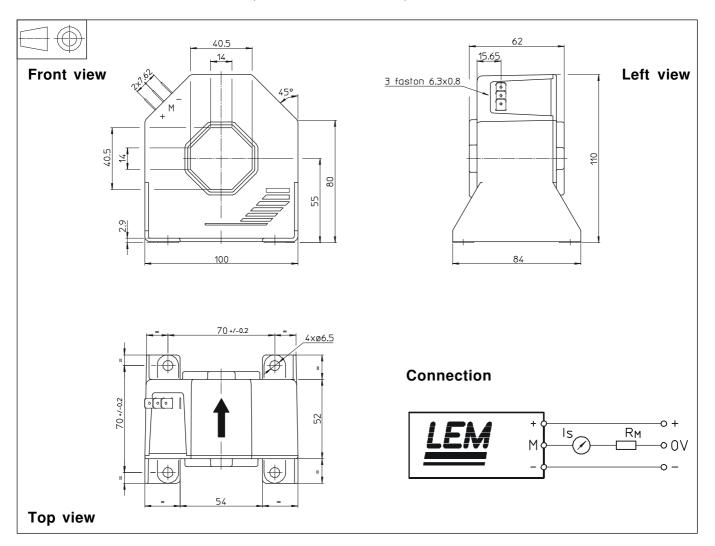
Special features

- $I_{p} = 0 .. \pm 2800 A$
- $V_c = \pm 24 (\pm 3 \%) V$
- $\mathbf{K}_{N} = 1 : 4000$
- $T_A = -40$ °C .. + 85 °C
- Potted
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070807/4

²⁾ With a di/dt of 100 A/µs.

Dimensions LT 1005-S/SP26 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque 5 Nm or 3.69 Lb - Ft

- Primary through-hole
- Connection of secondary
- ± 1.0 mm
- 4 holes Ø 6.5 mm
- 4 M6 steel screws
- 40.5 x 40.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.