

Current Transducer LT 1005-S/SP19

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

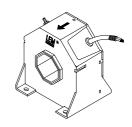
Electrical data

I _{PN}	Primary nominal r.m.s. current Primary current, measuring range			1000 0 ± 2400			Α	
I _P							Α	
$\dot{\mathbf{R}}_{\mathrm{M}}$	Measuring resistance @		T _A = 70 °C		T _△ = 85 °C			
			\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}		R _{M min}	\mathbf{R}_{Mmax}	
	with ± 15 V	@ \pm 1300 A $_{max}$	0	10	@ ± 1250 A		10	Ω
		@ ± 1400 A max	0	7		0	5	Ω
		@ ± 1500 A max	0	4	@ ± 1450 A	0 0	3	Ω
	with ± 24 V	@ ± 2200 A max	0	10	@ ± 2100 A	¹⁾ 3	10	Ω
		@ ± 2300 A _{max}	0	7		3	5	Ω
		@ ± 2400 A max	0	5		3	3	Ω
I_{SN}	Secondary nom	ninal r.m.s. curren	t		200)		mΑ
K _N	Conversion ratio			1:	1:5000			
V _c	Supply voltage (± 5 %)			± 1	± 15 24			
I _C	Current consumption			30	$30 (@ \pm 24 V) + I_S mA$			
$\dot{\mathbf{V}}_{_{d}}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn				mn 12	2)		kV
-					1.5	3)		kΝ

Accuracy - Dynamic performance data

$egin{array}{c} \mathbf{X}_{G} \\ \mathbf{\mathcal{E}}_{L} \end{array}$	Overall accuracy @ \mathbf{I}_{PN_1} \mathbf{T}_{A} = 25 °C Linearity error		± 0.5 < 0.1		%
I _о I _{от}	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C - 50°C + 85°C	Typ ± 0.2	Max ± 0.4 ± 0.5 ± 0.8	mA mA mA
t _r di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs Α/μs kHz

R.m.s. voltage for partial discharge extinction @ 10 pC 4.1


General data

	donoral data			
T _A	Ambient operating temperature		- 40 (-50) +	85 °C
\mathbf{T}_{s}	Ambient storage temperature		- 50 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @	T _A = 70 °C	40	Ω
		T _A = 85 °C	42	Ω
m	Mass		700	g
	Standards	Standards		

 $\underline{\text{Notes}}$: 1) $I_{\text{P max}}$ @ +85 °C & customer measuring resistance

- 2) Between primary and secondary + internal shield + screened cable
- 3) Between secondary and internal shield + screened cable
- 4) With a di/dt of 100 A/μs.

$I_{PN} = 1000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

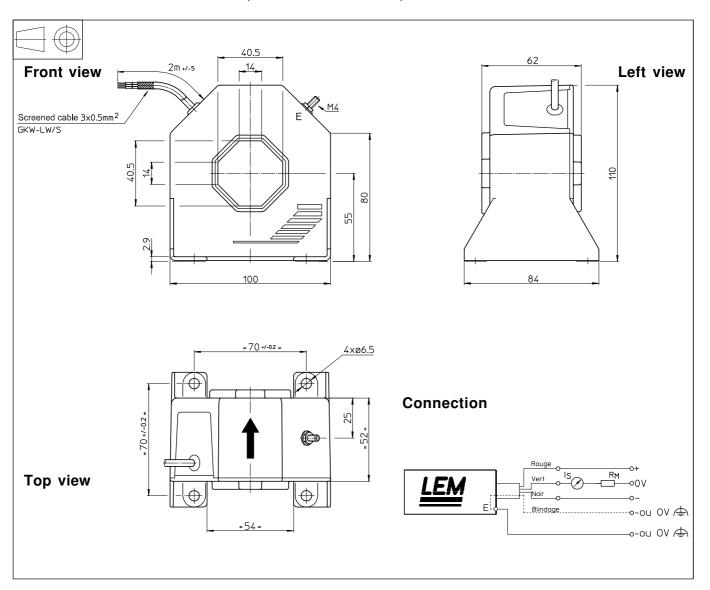
- $I_p = 0 .. \pm 2400 A$
- $V_{c} = \pm 15 ... 24 V (\pm 5 \%)$
- $V_d = 12 \text{ kV}$
- **T**_A = 40 °C (-50 °C) .. + 85 °C
- Secondary connection on screened cable 3 x 0.5 mm²
- Shield between primary and secondary connected to the cable screening
- Railway equipment
- · Customer marking.

Advantages

k۷

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060424/3

٧,

Dimensions LT 1005-S/SP19 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque 5 Nm or 3.69 Lb. - Ft

• Primary through-hole

· Connection of secondary

 Connection to terminal E Recommended fastening torque ± 0.5 mm

4 holes Ø 6.5 mm

4 x M6 steel screws

40.5 x 40.5 mm

screened cable 3 x 0.5 mm²

M4 threaded stud

1.2 Nm or 0.88 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060328/4