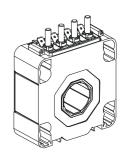


Current Transducer LTC 350-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

А А ×
Ω
Ω
Ω
Ω
mΑ
V
-I _s mA


Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{G}}{\boldsymbol{\epsilon}_{L}}$	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity error		< ± 0.5 < 0.1	% %
I _о	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25 °C Thermal drift of $\mathbf{I}_{\rm O}$	- 40℃ + 85℃	Maxi ± 0.5 ± 0.8	mA mA
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 100 DC 100	μs Α/μs kHz

General data

- 40 + 85	°C
- 45 + 90	°C
15	Ω
400	g
EN 50155: 20	01
	- 45 + 90 15

 $I_{DN} = 350 \text{ A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- · Auxiliary converter
- Battery charger.

Application Domain

Traction

Note: 1) With a di/dt of 100 A/μs.

Current Transducer LTC 350-S

Isolation characteristics					
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	12 ²⁾ 1.5 ³⁾	kV kV		
dCp dCl CTI	Creepage distance Clearance distance Comparative Tracking Index (Group I)	Min 50 44 600	m m m m		

Notes: 2) Between primary and secondary + shield

3) Between secondary and shield.

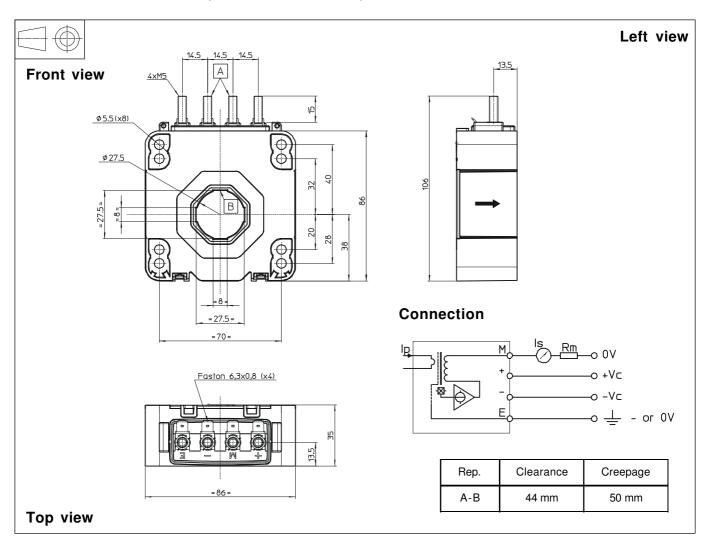
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

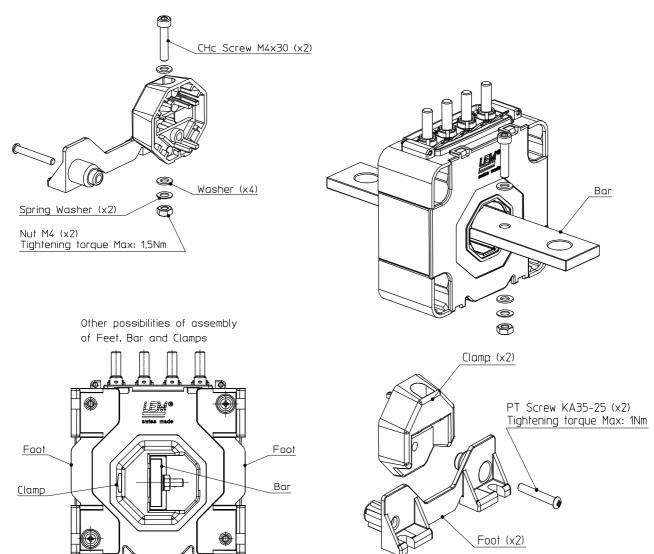
Dimensions LTC 350-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Recommended fastening torque

- Primary through-hole
- Connection of secondary Recommended fastening torque
- ± 1 mm
- 8 holes \varnothing 5.5 mm
- 4 M5 steel screws
- 3.4 Nm or 2.51 Lb.-Ft. Ø 27.5 mm
- 4 M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm


Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
 100 °C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

070205/4

LTC 350-S / Mechanical adaptation accessories

Accessories	References
Busbar Kit*(busbar : 155 x 25 x 6 mm)	93.34.41.100.0
Busbar Kit*(busbar : 112 x 25 x 6 mm)	93.34.41.101.0
Busbar fastening Kit **	93.34.41.200.0
Feet fixing Kit ***	93.34.43.100.0

- * including all the necessary for its mounting such as screws, washers, nuts, 2 clamps, busbar.
- ** as with * but without the busbar.
- *** including screws and 2 feet.

R.m.s. voltage value for partial discharge extinction depends on the busbar. Refer to the datasheet of the corresponding product.

070205/4