

Current Transducer LF 1005-S/SP12

 $I_{pN} = 600 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

$egin{aligned} & oldsymbol{I}_{PN} \ & oldsymbol{I}_{P} \ & oldsymbol{R}_{M} \end{aligned}$	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		600 0 ± 1 R _{M min}		A A
	with ± 24 V	@ \pm 600 A $_{max}$ @ \pm 1750 A $_{max}$	3 3	117 5	Ω
I _{SN} K _N V _C I _C	Secondary nominal r.m Conversion ratio Supply voltage (+ 5 %, Current consumption		120 1 : 500 ± 24 28 + I _s	00	mA V mA

Accuracy - Dynamic performance data

$oldsymbol{\epsilon}_{\scriptscriptstyle L}^{\scriptscriptstyle G}$	Overall accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$ Linearity error		± 0.5 < 0.1		% %
I _о	Offset current @ $I_P = 0$, $T_A = 25$ °C Thermal drift of I_O	- 40℃ + 85℃	Typ ±0.3	Max ± 0.4 ± 0.8	mA mA
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 100 DC 1	50	μs A/μs kHz

General data

Note: 1) With a di/dt of 100 A/µs.

T_{A}	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 100	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85 ℃	53	Ω
m	Mass	550	g
	Standards	EN 50155 : 19	95

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0.. \pm 1750 \text{ A}$
- $V_{c} = \pm 24 (\pm 5\%, -7\%) V$
- Secondary connection on screened cable 3 x 0.5 mm²
- Shield between primary and secondary connected to the cable screening
- Protection diodes against inversion polarity
- The internal protection against overvoltage.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

• Traction.

060628/6

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them, without\ previous\ notice.$

Dimensions LF 1005-S/SP12

Isolation characteristics			
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	5 ²⁾	kV
ū		1 ³⁾	kV
		Min	
dCp	Creepage distance	16.55 ⁴⁾	m m
dCl	Clearance distance	16.55 ⁴⁾	m m
CTI	Comparative Tracking Index (Group III a)	175	

Notes: 2) With a non-insulated primary bar which completely fills the through-hole

- 3) Between secondary and shield
- ⁴⁾ Distance without length cable.

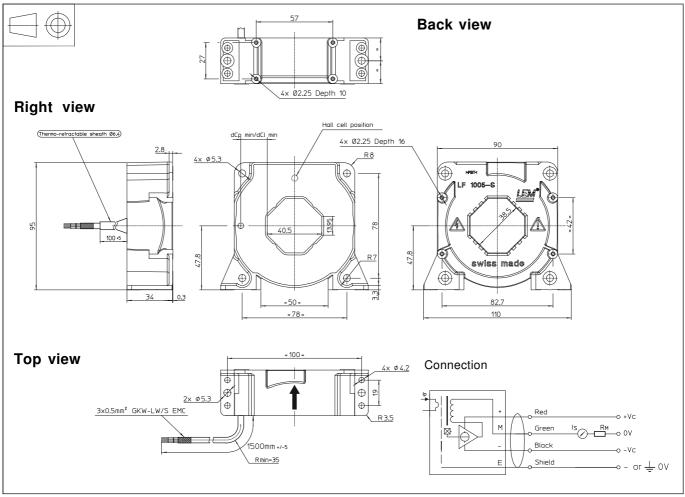
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 1005-S/SP12 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

 General tolerance 	± 0.5 mm
---------------------------------------	----------

 Transducer fastening 2 holes Ø 5.3 mm Vertical position

2 M5 steel screws Recommended fastening torque 4 Nm or 2.92 Lb. - Ft.

4 holes \varnothing 4.2 mm 4 M4 steel screws

Recommended fastening torque 3.2 Nm or 2.34 Lb. - Ft. or

4 holes Ø 2.25 mm depth 10 mm 4xPTKA30 screws long 10 mm

0.9 Nm or 0.66 Lb. - Ft.

Recommended fastening torque

Transducer fastening 4 holes Ø 5.3 mm Horizontal position

4 M5 steel screws 4 Nm or 2.92 Lb. - Ft.

Recommended fastening torque

Recommended fastening torque

· Connection of secondary

4 holes Ø 2.25 mm depth 16 mm

4xPTKA30 screws long 16 mm 1 Nm or 0.73 Lb. - Ft. 40.5 x 40.5 mm

· Octagonal primary through-hole Ø 38.5 mm max

screened cable 3 x 0.5 mm²

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100℃.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060628/6

 $LEM\ reserves\ the\ right\ to\ carry\ out\ modifications\ on\ its\ transducers, in\ order\ to\ improve\ them,\ without\ previous\ notice.$

page 3/3