

Current Transducer LA 305-S/SP8

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			300			Α
I _P	Primary current, measuring range			0 ± 500			Α
$\dot{\mathbf{R}}_{_{\mathrm{M}}}$	Measuring resistance @ T		$T_{A} =$	70°C	T _A	= 85°C	;
			R _{M min}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	R _{M mir}	\mathbf{R}_{Mmax}	
	with ± 12 V	@ \pm 300 A $_{max}$	0	47	0	45	Ω
		@ $\pm 500 A_{max}$	0	14	0	12	Ω
	with ± 15 V	@ $\pm 300 \text{ A}_{max}$	0	70	5	68	Ω
		$@ \pm 500 \text{ A}_{max}$	0	28	5	26	Ω
I_{SN}	Secondary nominal r	.m.s. current		120)		mΑ
K _N	Conversion ratio			1:	2500		
V _c	Supply voltage (± 5 %)			± 1	2 1	5	V
I _c	Current consumption			$20 (@ \pm 15 V) + I_S mA$			
$\ddot{\mathbf{V}}_{_{b}}$	R.m.s. rated voltage	¹⁾ , safe separation		175	50	Ü	V
ŭ		basic isolation		350	00		V
\mathbf{V}_{d}	R.m.s. voltage for AC	isolation test, 50 Hz, 1	l mn	6			kV

Accuracy - Dynamic performance data

\mathbf{x}_{G}	Overall accuracy @ I _{PN} , T _A = 25 ℃			%
$\mathbf{\epsilon}_{\scriptscriptstyle L}$	Linearity error	< 0.1		%
		Тур	Max	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C		Max ± 0.20	mΑ
I _{OM}	Residual current ²⁾ @ $I_p = 0$, after an overload of 3 x I_{pN}		± 0.40	mΑ
I _{OT}	Thermal drift of I_0 - 40° C + 85° C	± 0.2	± 0.50	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns
t,	Response time 3 @ 90 % of I _{PN}	< 1		μs
di/dt	di/dt accurately followed			$A/\mu s$
f	Frequency bandwidth (- 3 dB)	DC	100	kHz

General data

Gonorai data				
Ambient operating temperature		- 40 + 85	°C	
Ambient storage temperature		- 50 + 90	°C	
Secondary coil resistance @	T _△ = 70 °C	35	Ω	
	T _△ = 85 °C	37	Ω	
Mass	7	290	g	
Standards		EN 50155(95.11.01)		
	Ambient storage temperature Secondary coil resistance @	Ambient storage temperature Secondary coil resistance @ $T_A = 70 ^{\circ}\text{C}$ $T_A = 85 ^{\circ}\text{C}$ Mass	Ambient storage temperature $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	

 $\underline{\text{Notes}}$: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs.

$I_{PN} = 300 A$

Features

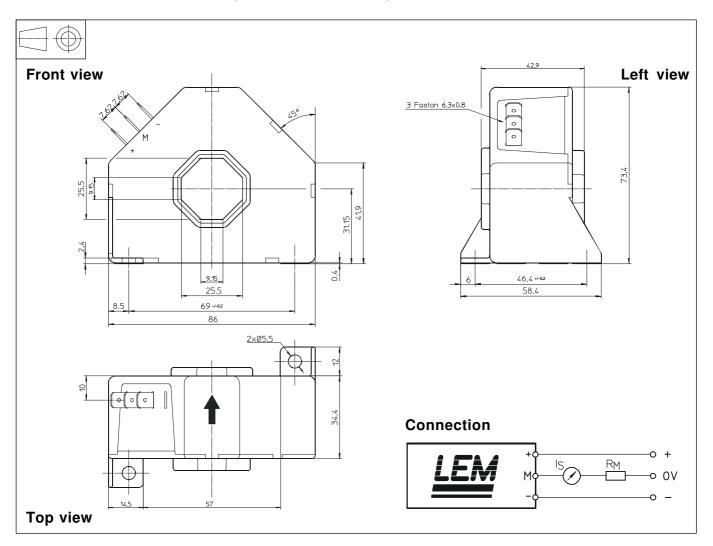
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Specials features

- $T_A = -40 \,^{\circ}\text{C} .. + 85 \,^{\circ}\text{C}$
- Connection to secondary circuit on 3 Faston 6.3 x 0.8 mm.
- Potted
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060913/4

Dimensions LA 305-S/SP8 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, max.

- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 25.5 x 25.5 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.