

Voltage Transducer LV 200-AW/2/SP91 $V_{PN} = 3400 \text{ V}$

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{R}_{M}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Measuring resistance		3400 0 ± 4200 R _{M min} R _{M max}		V V
	with ± 24 V	@ $\pm 3400 V_{max}$ @ $\pm 4200 V_{max}$	50 50	220 170	Ω
			30	170	22
I _{SN}	Secondary nominal r.m.s. current		80		m A
$\mathbf{K}_{\scriptscriptstyle \mathrm{N}}$	Conversion ratio		3400 V/80 m A		4
V _c	Supply voltage (± 5 %)		± 24		V
I _c	Current consumption		30 + I s		m A
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		12 ¹⁾		k۷
u	-		1 ²⁾		k۷
\mathbf{V}_{e}	R.m.s. voltage for partial	discharge extinction			
е	@ 10 pC	G	> 4		k۷
LS	Clearance distance		186		m m
KS	Creepage distance		195		m m

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}}{\boldsymbol{\epsilon}_{\scriptscriptstyle L}}$	Accuracy @ V_{PN} , $T_A = 25$ °C Linearity		± 0.5 < 0.1		% %
O	Offset current @ $\mathbf{I}_{\rm P} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}\mathrm{C}$ Thermal drift of $\mathbf{I}_{\rm O}$ Response time @ 90 % of $\mathbf{V}_{\rm PN}$	- 25°C + 70°C	Typ ± 0.3 400	Max ± 0.3 ± 0.6	m A m A μs

General data

T_A	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	85000 / 2500	
$\mathbf{R}_{_1}$	Primary resistance @ T _A = 25 °C	1.44	$M\Omega$
Rs	Secondary coil resistance @ T _A = 70 °C	40	Ω
P	Total primary power loss @ V _{PN}	8	W
m	Mass	2.5	kg
	Standards 3)	EN 50178 (01.10.97)	

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

³⁾ A list of corresponding tests is available.

Features

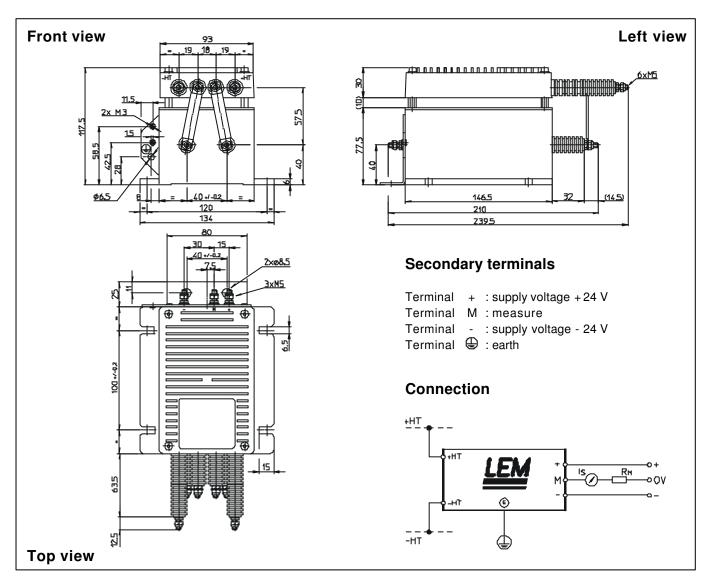
- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R₁ incorporated into the housing.

Special features

- $V_p = 0 .. \pm 4200 \text{ V}$
- **T**_A = -25 °C .. + 70 °C
- Built-In primary resistance R₁ is connected in 2 equal parts to both sides of the primary winding
- Internal shield linked to the external shield
- Shield around connections of secondary

Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

030819/4

Dimensions LV 200-AW/2/SP91 (in mm. 1 mm = 0.0394 inch)

Caractéristiques mécaniques

• General tolerance

• Transducer fastening

Recommended fastening torque 4.5 Nm or 3.32 Lb. - Ft.

• Connection of primary

• Connection of secondary

• Recommended fastening torque 2.2 Nm or 1.62 Lb. - Ft.

• Connection to the ground

and/or and/or ± 0.5 mm

4 slots Ø 6.5 mm

4 x M6 steel screws

M5 threaded studs

M5 threaded studs

hole Ø 6.5 mm 2 holes Ø 8.5 mm

M3 screw terminals

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be connected to the voltage which has to be measured.