

Voltage Transducer LV 100-3000/SP13 $V_{PN} = 2800 \text{ V}$

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

CE

Electrical data

$egin{array}{c} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		2800 0 ± 45 2.8 R _{M min}	500 R _{M max}	V V mA
	with ± 15 V	@ \pm 2800 V $_{max}$	0	210	Ω
		@ $\pm 4500 V_{max}$	0	102	Ω
	with ± 24 V	@ ± 2800 V _{max}	50	350	Ω
		@ ± 4500 V max	50	180	Ω
I_{SN}	Secondary nominal r.m.s. current		50		mΑ
K _N	Conversion ratio		2800 V	//50 m <i>A</i>	١
v c	Supply voltage (+ 5/- 10 %)		± 15	24	V
I _c	Current consumption		28 (@±	24 V) + I _S	mΑ
$\check{\mathbf{V}}_{d}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		12 1)	Ö	kV
ŭ			1 2)		kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{G}}{\boldsymbol{\epsilon}_{L}}$	Overall Accuracy @ V_{PN} , $T_A = 25$ °C Linearity		± 0.7 < 0.1	% %
Ι _ο Ι _{οτ} t	Offset current @ $\mathbf{I}_p = 0$, $\mathbf{T}_A = 25$ °C Thermal drift of \mathbf{I}_O Response time @ 90 % of \mathbf{V}_{PN}	- 25℃ + 70℃	Typ M ± ± 0.3 ± 180	Max 0.3 mA 0.5 mA us

General data

$\mathbf{T}_{\!\scriptscriptstyle{A}}$	Ambient operating temperature	- 25 + 70	°C
\mathbf{T}_{s}	Ambient storage temperature	- 45 + 85	°C
N	Turns ratio	35000 : 2000	
Р	Total primary power loss	7.84	W
$\mathbf{R}_{\scriptscriptstyle 1}$	Primary resistance @ T _A = 25 °C	1	$M\Omega$
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70 °C	60	Ω
m	Mass	850	g
	Standards	EN 50155	

Notes: 1) Between primary and secondary + shield

²⁾ Between secondary and shield.

Features

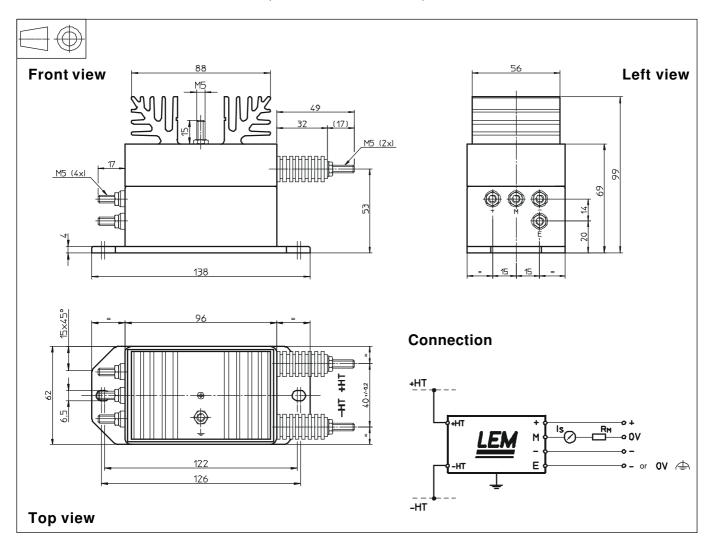
- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated within the housing.

Special features

- **V**_{PN}= 2800 V
- **V**_C = ± 15 .. 24 (+ 5/- 10 %) V
- $V_d = 12 \,\text{kV}^{1)}$
- **T**_A = -25 °C .. + 70 °C
- Shield
- Connection to primary and secondary circuit on M5 threaded studs
- VRT Burn-in
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

030317/2

Dimensions LV 100-3000/SP13 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max

- · Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max
- ± 0.3 mm 2 holes Ø 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs M5 threaded studs M5 threaded stud 2.2 Nm or 1.62 Lb. - Ft.

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.