

Voltage Transducer LV 25-600/SP2

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

 $V_{PN} = 600 \text{ V}$

Electrical data

$egin{array}{c} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		600 0 ± 90 10 R _{M min}	00 R _{Mmax}	V V mA
	with \pm 12 V with \pm 15 V	@ $\pm 600 \text{ V}_{max}$ @ $\pm 900 \text{ V}_{max}$ @ $\pm 600 \text{ V}_{max}$	30 30 100	200 100 320	Ω Ω
		@ ± 900 V max	100	180	Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		25 600 V /	25 mA	mA
V _C V _d	Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test 1, 50 Hz, 1 mn		± 12 10 (@±1 4.1	15 15V) + I _s	V mA kV

Accuracy - Dynamic performance data

$oldsymbol{\epsilon}_{\scriptscriptstyle L}$	Overall Accuracy @ V_{PN} , $T_A = 25 ^{\circ}C$ Linearity	;	± 0.8 < 0.2	% %
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25$ °C Thermal drift of \mathbf{I}_{O}	+ 25°C + 70°C - 30°C + 25°C	Typ M	
t _r	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		15	μs

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	- 30 + 70	°C
$T_{\rm s}$	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	2500:1000	
Р	Total primary power loss	6	W
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25 °C	60	$k\Omega$
Rs	Secondary coil resistance @ T _A = 70 °C	115	Ω
m	Mass	60	g
	Standards	EN 50155	

Note: 1) Between primary and secondary.

.

Features

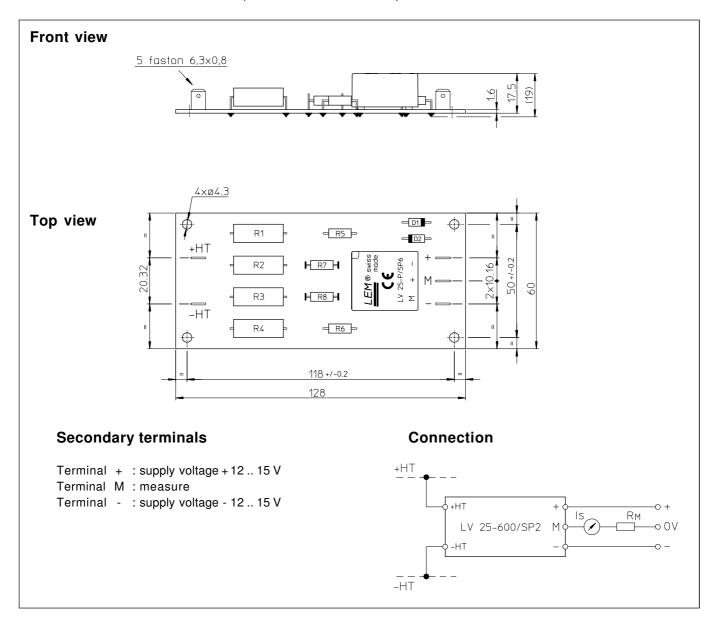
- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistors R and transducer mounted on printed circuit board 128 x 60 mm.

Special features

- **T**_∧ = -30 °C .. + 70 °C
- Coated
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

061005/2

Dimensions LV 25-600/SP2 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Fastening

Connection of primary

• Connection of secondary

± 0.3 mm

4 holes Ø 4.3 mm

Faston 6.3 x 0.8 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.