

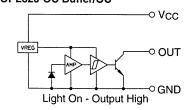
Photologic® Hermetic Sensor Types OPL820, OPL821 Series

Features

- High sensitivity
- Built in voltage regulator
- Direct TTL/LSTTL interface
- TO-18 hermetic package
- Mechanically and spectrally matched to OP130 and OP231 series LED's
- Data rate to 200 kBaud

Description

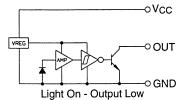
The OPL820, OPL820-OC, OPL821, and OPL821-OC consist of a photodiode, a linear amplifier, and a Schmitt trigger on a single monolithic silicon chip. The output is an NPN transistor with either a 10k pull-up resistor to V_{CC} or an open collector (-OC versions). The output polarity is either a buffer (OPL820 versions, output is high when the detector illuminated) or an inverter (OPL821 versions, output is low when the detector is illuminated). The package is a standard glass lensed hermetic TO-18. The output is capable of directly driving 10 TTL loads.


Absolute Maximum Ratings (T_A = 25° C unless otherwise noted.)

Supply Voltage
Storage Temperature Range
Operating Temperature Range40° C to +100° C
Lead Soldering Temperature 240° C
Power Dissipation
Duration of Output Short to V _{CC}
Output Voltage (High State)
Output Current Sink (Low State)
Notes:

- (1) RMA flux is recommended. Soldering time may be extended to 10 seconds when flow soldering. Max. 20 grams of force may be applied to leads while at soldering temperatures. (2) Derate linearly 5.7 mW/° C above 90° C.
- (3) Light measurements are made with an LED source having a wavelength of 935 nm.

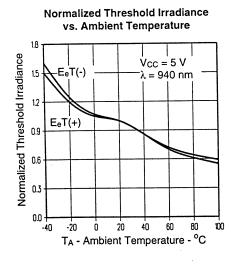
Schematic

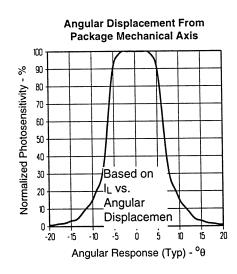

OPL820 Buffer/10KΩ PU O Vcc VREG OUT GND Light On - Output High OPL820-OC Buffer/OC

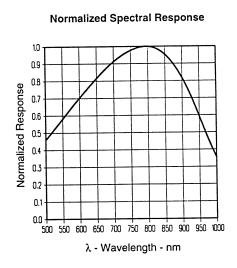
O Vcc VREG OUT O GND Light On - Output Low

OPL821-OC Inverter/OC

OPL821 Inverter/10KΩ PU

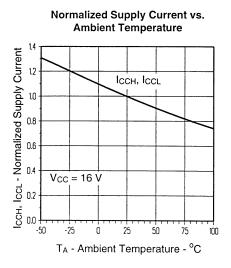

Types OPL820, OPL821 Series

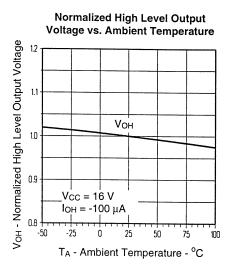

Electrical Characteristics (T_A = 25° C unless otherwise noted)

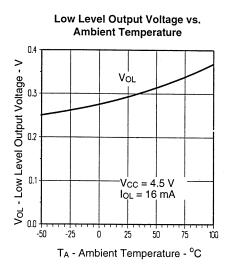

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Vcc	Operating Supply Voltage	4.5		16.0	V	
E _{eT} (+)	Positive Going Threshold Irradiance	0.002	0.015	0.035	mW/cm ²	See Note 3
E _e (+)/E _e (-)	Hysteresis Ratio	1.05	1.20	1.90		See Note 3
Іссн	High State Supply Current		5.0	12.0	mA	Note 4
Iccl	Low State Supply Current		4.0	12.0	mA	Note 5
Vон	High State Output VoltageOPL820 OPL821	V _{CC} -1.5		Vcc	V	I _{OH} = -100 μA, Note 4
Vol	Low State Output Voltage			0.4	V	I _{OL} = 16 mA, Note 5
Іон	High State Output CurrentOPL820-OC OPL821-OC			100	μА	V _{OH} = 30 V, Note 4
t _r , t _f	Output Rise Time, Output Fall Time		60		ns	$R_L = 390 \Omega$
tplH	Propogation Delay Low to High State		1.0		μs	$R_L = 390 \Omega$, $E_e = 0.1 \text{ mW/cm}^2$
tphL	Propogation Delay High to Low State		2.1		μs	$R_L = 390 \Omega$, $E_e = 0.1 \text{ mW/cm}^2$
Data Rate	Data Rate Using NRZ Format		100		kHz	$R_L = 390 \Omega$, $E_e = 0.1 \text{ mW/cm}^2$

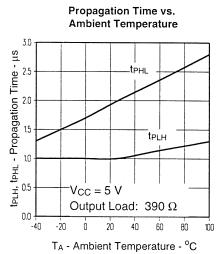
⁽⁴⁾ High output state limits are valid for 4.5 V < V_{CC} < 16 V and E_e > 0.035 mW/cm² (OPL820, OPL820-OC), E_e < 0.001 mW/cm² (OPL821, OPL821-OC).

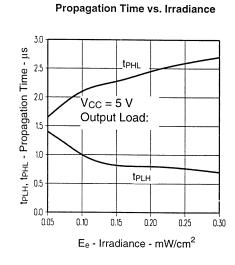
Typical Performance Curves




⁽⁵⁾ Low output state limits are valid for 4.5 V < V_{CC} < 16 V and E_e > 0.035 mW/cm² (OPL821, OPL821-OC), E_e < 0.001 mW/cm² (OPL820, OPL820-OC).


Types OPL820, OPL821 Series




Typical Performance Curves

