

PIN Silicon Photodiode Type OP955

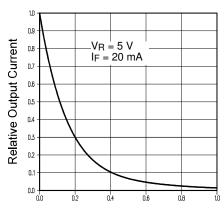
Features

- Wide receiving angle
- Linear response vs. irradiance
- Fast switching time
- Side-looking package ideal for space limited applications

Description

The OP955 devices consists of a PIN silicon photodiode molded in a clear epoxy package which allows spectral response from visible to infrared wavelengths. The wide receiving angle provides relatively even reception over a large area. The side-looking package is designed for easy PC board mounting. The lensing effect of the package allows an acceptance half angle of 45° measured from the optical axis to the half power point. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25^o C unless otherwise noted)


Reverse Breakdown Voltage	60 V
Storage and Operating Temperature Range	-40° C to +100° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 s	ec. with soldering
iron]	260° C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾

- Notes:
 (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.67 mW/ $^{\circ}$ C above 25 $^{\circ}$ C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- (4) To calculate typical dark current in μA , use the formula $I_D = 10^{(0.042\ T_A^{-1.5)}}$ where T_A is ambient temperature in $^{\circ}$ C.

Typical Performance Curves

Relative Response vs. Wavelength 1.0 % Relative Response -

Coupling Characteristics OP955 and OP245

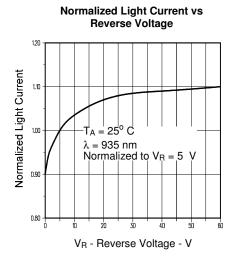
Distance Between Lens Tips - inches

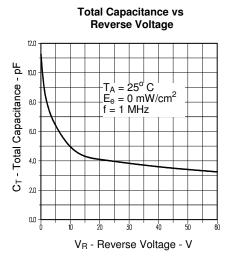
1215 W. Crosby Road

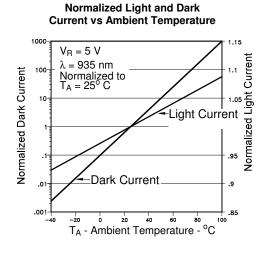
Carrollton, Texas 75006

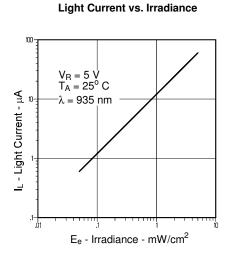
 λ - Wavelength - nm

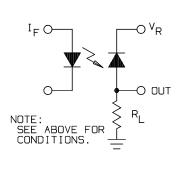
(972) 323-2200

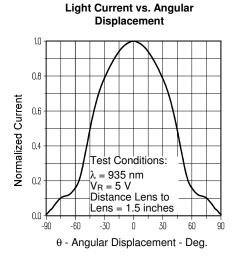

Fax (972) 323-2396


Type OP955


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
IL	Reverse Light Current	8		18	μΑ	$V_R = 5 \text{ V}, E_e = 1 \text{ mW/cm}^{2(3)}$
ID	Reverse Dark Current		1	60	nA	$V_R = 30 \text{ V}, E_e = 0$
V _(BR)	Reverse Breakdown Voltage	60			V	$I_{\mathbf{R}} = 100 \ \mu A$
V _F	Forward Voltage			1.2	V	I _F = 1 mA
Ст	Total Capacitance		4		pF	$V_R = 20 \text{ V}, E_e = 0, f = 1.0 \text{ MHz}$
t _r , t _f	Rise Time, Fall Time		5		ns	$V_R=20~V,~\lambda=850~nm,~R_L=50~\Omega$


Typical Performance Curves



Switching Time Test Circuit

