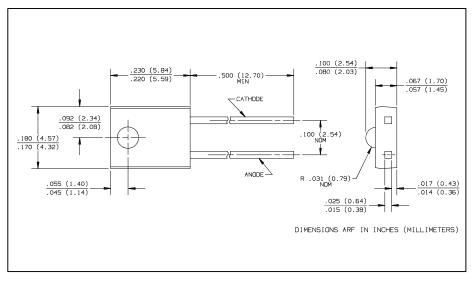


PIN Silicon Photodiode Type OP950

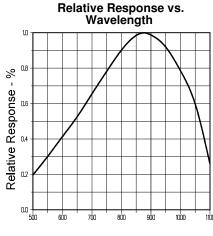


Features

- Wide receiving angle
- Linear response vs. irradiance
- Fast switching time
- Side-looking package ideal for space limited applications

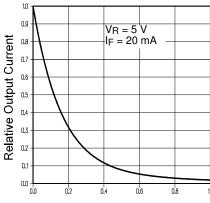
Description

The OP950 device consists of a PIN silicon photodiode molded in a clear epoxy package which allows spectral response from visible to infrared light wavelengths. The wide receiving angle provides relatively even reception over a large area. The side-looking package is designed for easy PC board mounting. This photodiode is mechanically and spectrally matched to Optek's GaAs and GaAlAs series of infrared emitting diodes.



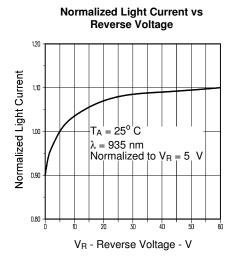
Absolute Maximum Ratings (T_A = 25^o C unless otherwise noted)

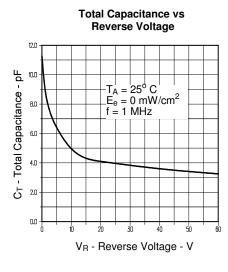
Reverse Breakdown Voltage..... Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering

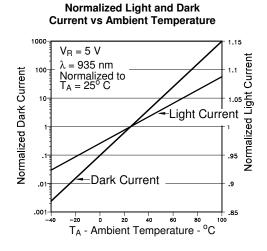

- **Notes:** (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.67 mW/ $^{\circ}$ C above 25 $^{\circ}$ C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- To calculate typical dark current in $\mu A,$ use the formula $I_D=10^{(0.042~T} \text{A}^{-1.5)}$ where T_A is ambient temperature in $^{\circ}$ C.

Typical Performance Curves

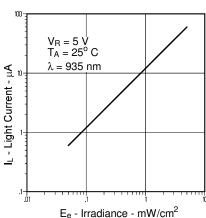
Coupling Characteristics OP950 and OP240

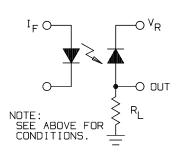

Distance Between Lens Tips - inches

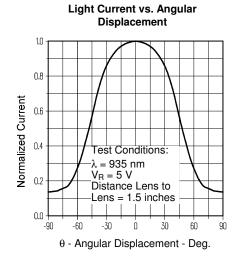

Type OP950


Electrical Characteristics (T_A = 25^o C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	
ΙL	Reverse Light Current	8		18	μΑ	$V_R = 5 \text{ V}, E_e = 1 \text{ mW/cm}^{2(3)}$
I _D	Reverse Dark Current		1	60	nA	$V_R = 30 V, E_e = 0$
V _(BR)	Reverse Breakdown Voltage	60			V	$I_R = 100 \mu A$
V _F	Forward Voltage			1.2	V	I _F = 1 mA
Ст	Total Capacitance		4		pF	V _R = 20 V, E _e = 0, f = 1.0 MHz
t _r , t _f	Rise Time, Fall Time		5		ns	V_R = 20 V, λ = 850 nm, R_L = 50 Ω


Typical Performance Curves





Light Current vs. Irradiance 100 -

Switching Time Test Circuit

