

PIN Silicon Photodiode Type OP905

Features

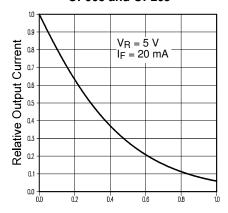
- Narrow receiving angle
- Linear response vs. irradiance
- Fast switching time
- T-1 package style
- Small package ideal for space limited applications

Description

The OP905 device consists of a PIN silicon photodiode molded in a clear epoxy package which allows spectral response from visible to infrared light wavelengths. The narrow receiving angle provides excellent on-axis coupling. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

Absolute Maximum Ratings (T_A = 25^o C unless otherwise noted)

Reverse Breakdown Voltage	60 V
Storage and Operating Temperature Range4	0° C to +100° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec.	with soldering
iron]	260° C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾
Notes:	

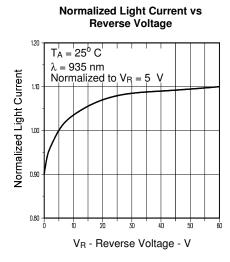

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. Derate linearly 1.67 mW/° C above 25° C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- (4) To calculate typical dark current in nA, use the formula $I_D=10^{(0.042\,T_A^{-1.5)}}$ where T_A is ambient temperature in $^{\circ}$ C.

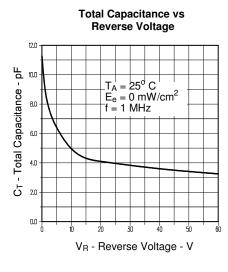
Typical Performance Curves

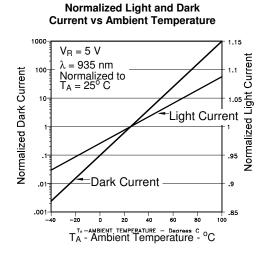
Relative Response vs. Wavelength 1,0 % O.8 Relative Response -0.0 600 700 1000

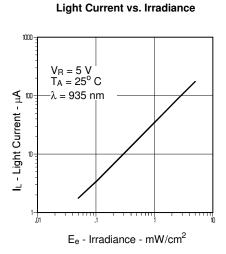
λ - Wavelength - nm

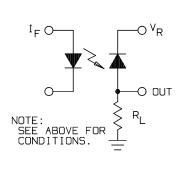
Coupling Characteristics OP905 and OP265

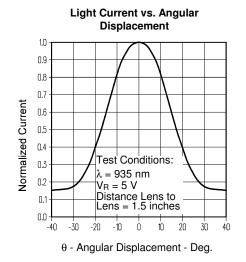

Distance Between Lens Tips - inches


Type OP905


Electrical Characteristics (T_A = 25^o C unless otherwise noted)


SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
lμ	Reverse Light Current	14		32	μΑ	$V_R = 5 \text{ V, Ee} = 0.50 \text{ mW/cm}^{2(3)}$
I_{D}	Reverse Dark Current		1	60	nA	$V_R = 30 \text{ V}, E_e = 0$
$V_{(BR)}$	Reverse Breakdown Voltage	60			V	$I_R = 100 \mu A$
V _F	Forward Voltage			1.2	V	$I_F = 1 \text{ mA}$
C_{T}	Total Capacitance		4		pF	$V_R = 20 \text{ V}, E_e = 0, f = 1.0 \text{ MHz}$
t _r , t _f	Rise Time, Fall Time		5		ns	V_R = 20 V, λ = 850 nm, R_L = 50 Ω


Typical Performance Curves



Switching Time Test Circuit

