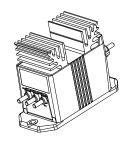


Voltage Transducer LV 100-2000

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$egin{aligned} \mathbf{V}_{PN} \ \mathbf{V}_{PM} \ \mathbf{I}_{PN} \ \mathbf{R}_{M} \end{aligned}$	Primary nominal voltage Primary voltage, measuri Primary nominal current Measuring resistance with ± 15 V	ng range	2000 0 ± 5 R _{M min} 0		V V mA Ω Ω
I _{SN}	Secondary nominal current rms		50	\	mA
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio		2000	V / 50 mA	
$V_{\rm c}$	Supply voltage (± 5 %)		± 15		V
Ic	Current consumption		< 32 ((@ ± 15 V) + I s	mA


Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25°C Linearity error	± 0. < 0.		% %
I _o	Offset current @ $I_p = 0$, $T_{\Delta} = 25^{\circ}$ C	Тур	Max ± 0.2	mA
I _{OT}	Temperature variation of I _o 0		2 ± 0.3 3 ± 0.6	mA mA
	- 40	°C + 85°C ± 0.	4 ± 1.0	mΑ
$\mathbf{t}_{_{\mathrm{r}}}$	Response time to 90 % of \mathbf{V}_{PN} step	150)	μs

General data

T_A	Ambient operating temperature		- 40 + 85	°C
T _s	Ambient storage temperature		- 40 + 85	°C
N	Turns ratio	20000 : 2000		
Р	Total primary power loss		10	W
$R_{_{1}}$	Primary resistance	@ $T_{\Delta} = 25^{\circ}C$	400	kΩ
R _s	Secondary coil resistance	@ T_A° = 70°C	55	Ω
Ü		@ T_{Δ} = 85°C	57	Ω
m	Mass	^	790	g
	Standards		EN 50155: 1995	5

$V_{PN} = 2000 V$

Features

- Closed loop (compensated) voltage transducer using Hall effect
- Isolated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated within the housing.

Advantages

- · Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

Traction.

VoltageTransducer LV 100-2000

Isolation characteristics				
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	9 Min	kV	
dCp	Creepage distance	55.12	mm	
dCI	Clearance distance	27.9	mm	
CTI	Comparative Tracking Index (group I)	600		

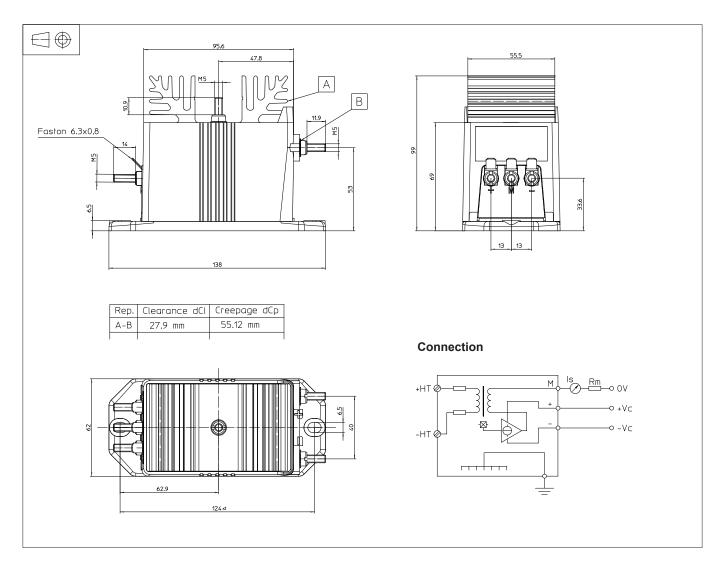
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LV 100-2000 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque 5 Nm

• Connection of primary

Connection of secondary

Connection to the ground

• Recommended fastening torque 2.2 Nm

± 0.3 mm

2 holes Ø 6.5 mm,

2 x M6 steel screws

M5 threaded studs

Faston 6.3 x 0.8 mm

M5 threaded stud

Remarks

- I_s is positive when V_P is applied on terminal + HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.