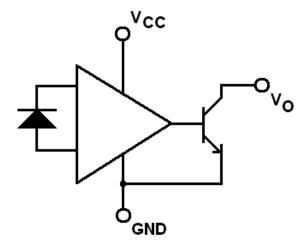

Fiber Optic Receiver OPF520

OPF520

- Low Cost plastic cap package
- Designed to self align in the bore of standard fiber optic receptacles
- Press fit simplifies installation
- Optimized for fiber optic applications using 50 to 200 micron fiber



The OPF520 fiber optic receiver is a high performance device packaged for data communications links. As such, it is designed to work with fiber core diameters from 50µm to 200µm and over a broad input power range. The construction contains a monolithic photo-IC comprised of a photodiode, biasing network, DC amplifier and an open collector output transistor. The output circuitry makes this device compatible with TTL and CMOS logic.

This receiver is designed to operate from a single 5V supply. It is essential that a bypass capacitor be connected from VCC to GND in order to ensure the best possible operation.

Applications

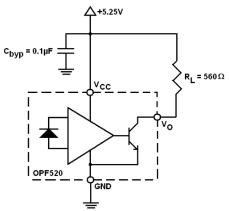
- ♦ Industrial Ethernet equipment
- ♦ Copper-to-fiber media conversion
- ♦ Intra-system fiber optic links
- ♦ Video surveillance systems

Fiber Optic Receiver OPF520

Absolute Maximum Ratings

Storage Temperature	55° C to +115° C
Operating Temperature	-40° C to +85° C
Lead Soldering Temperature (for 10 seconds)	_260° C
Supply Voltage	-0.5 V to +7.0 V
Output Current	25 mA
Output Voltage	-0.5 V to +18.0 V
Open Collector Power Distribution	40mW
Fan Out (TTL)	5 ⁽¹⁾

Electrical/Optical Characteristics

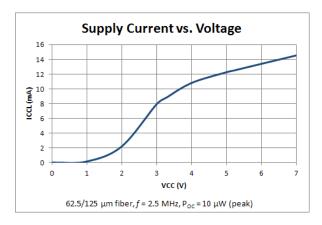

 $4.75 \le V_{CC} \le 5.25$, Fiber Sizes $\le 200 \mu m$, NA ≤ 0.35 , $T_A = 25 ^{\circ} C$ unless otherwise specified

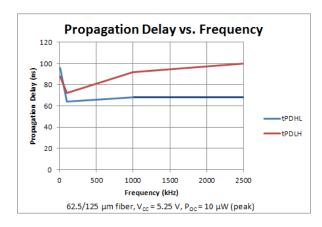
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
I _{OH}	High Level Output Current		5	250	μΑ	V _O = 18V, P _{OC} < -40 dBm, See Note 2
V _{OL}	Low Level Output Voltage		0.2	0.5	V	I _O = 8 mA, P _{OC} > +24 dBm, See Note2
I _{CCH}	Supply Current, Output High		3.5	6.3	mA	V _{CC} = 5.25 V, P _{OC} < -40 dBm, See Note 2
I _{CCL}	Supply Current, Output Low		6.9	10	mA	V _{CC} = 5.25 V, P _{OC} < -24 dBm, See Note 2
P _{OC(H)}	Peak Input Power Level, Output High			-40	dBm	λp = 850 nm
	(Guaranteed Output High)			0.1	μW	
P _{OC(L)}	Peak Input Power Level, Output Low (Guaranteed Output Low)	-25.4		-9.2	dBm	λp = 850 nm, I _O = 8 mA
		2.9		120	μW	
		-24		-10	dBm	λp = 850 nm, I _O = 8 mA
		4.0		100	μW	$-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$
t _r , t _f	Rise, Fall Time		30		ns	
t _{PDHL}	Propagation Delay, Output High to Low		65		ns	D = 20 dDm (200k) f = 2 5 MHz Coo Neto 2
t _{PDLH}	Propagation Delay, Output Low to High		100		ns	$P_{OC} = 20 \text{ dBm (peak)}, f = 2.5 \text{ MHz, See Note 3}$
PWD	Pulse Width Distortion		±30		%	-

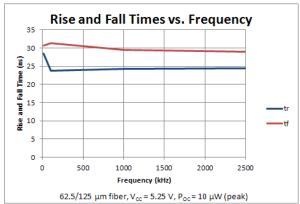
Notes:

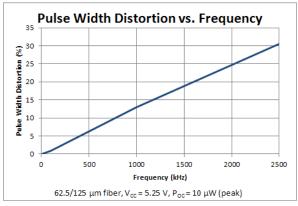
- 1. 8mA load (5 x 1.6 mA), $R_L = 560 \Omega$
- 2. Use recommended test circuit below, but connect V_0 to an independent voltage source with R_L = 0.
- Use recommended test circuit below.

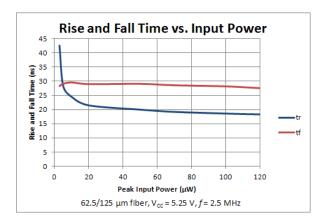
Recommended Test Circuit

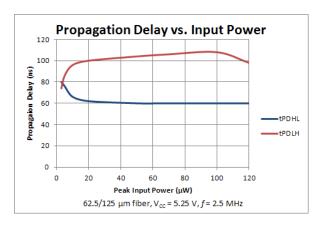


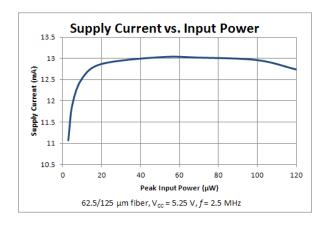


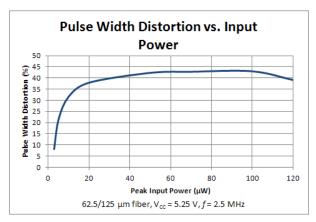

Fiber Optic Receiver **OPF520**




Switching Characteristics (See Recommended Test Circuit)

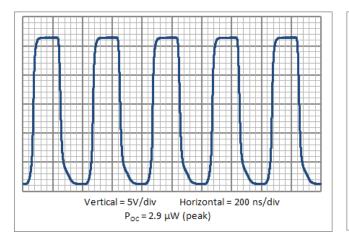


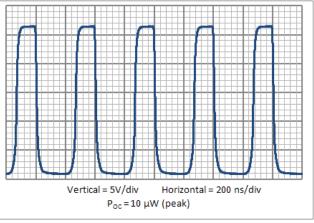


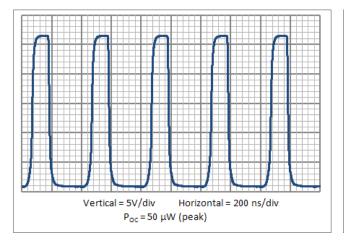


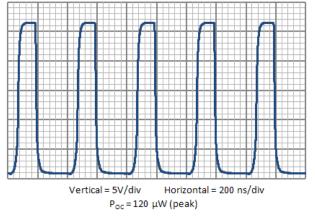
Fiber Optic Receiver **OPF520**

Switching Characteristics (continued)

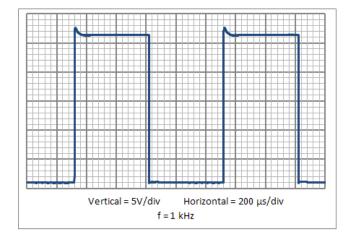

(This space intentionally left blank)

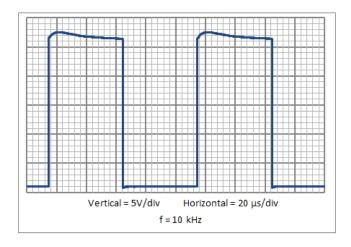


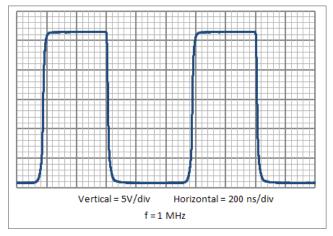


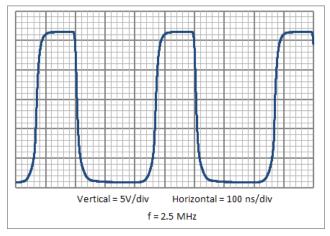

Typical Waveforms for Various Input Powers (62.5/125 μ m fiber, V_{CC} = 5.25 V, f = 2.5 MHz)

(See Recommended Test Circuit)

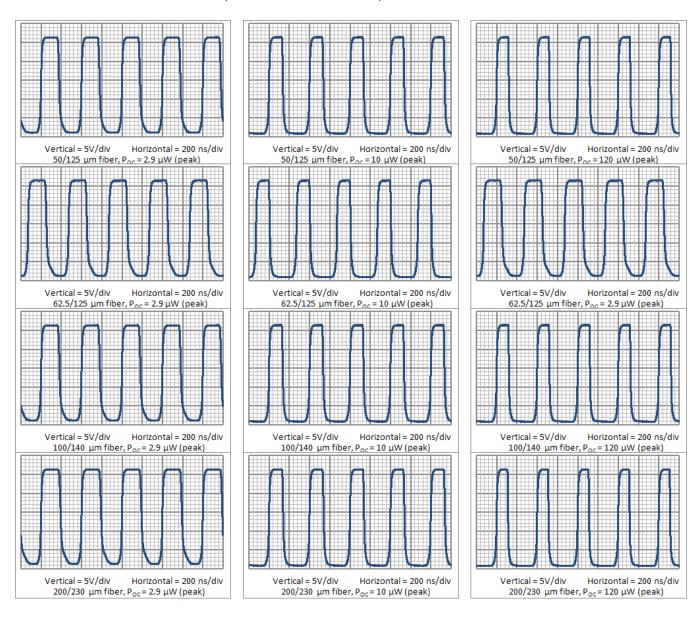






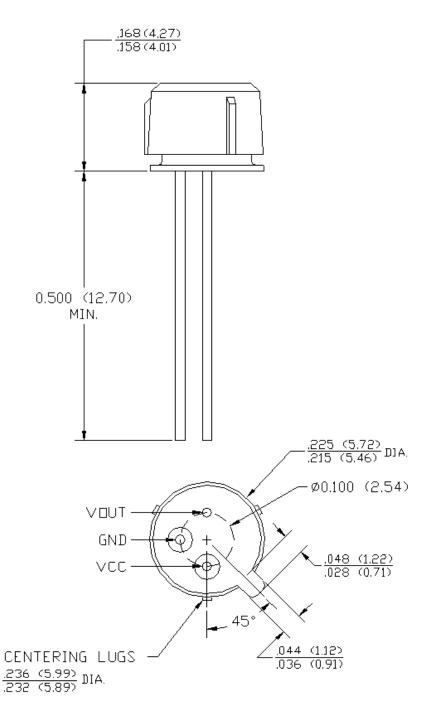

Typical Waveforms for Various Frequencies

(62.5/125 μm fiber, V_{CC} = 5.25 $^{\circ}$ V, P_{OC} = 10 μW (peak) (See Recommended Test Circuit)



Fiber Optic Receiver OPF520

Typical Waveforms for Various Fiber Cables and Input Powers


(V_{CC} = 5.25 V, f = 2.5 MHz) (See Recommended Test Circuit)

Mechanical Outline

