

Current Transducer LT 4000-T/SP37

 $I_{PN} = 4000 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		4000 0 ± 5650 R _{M min} R _{M max}		A A
M	with ± 24 V	@ ± 4000 A _{max} @ ± 5650 A	0 0	11 3.5	Ω Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		800 1 : 5000	0	mΑ
$\mathbf{V}_{_{\mathrm{C}}}$	Supply voltage (± 5 %) Current consumption		± 24 35 + I _s		V mA
n ^q	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		9 ¹⁾ 1 ²⁾		kV kV
\mathbf{V}_{e}	R.m.s. voltage for partia @ 10 pC	8.35		kV	
Ŷ _, LS	Impulse voltage (1.2 / 50 Clearance distance) μs)	41 > 62		k V mm
KS	Creepage distance		> 106		mm

Accuracy - Dynamic performance data

X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25$ °C		± 0.2		%
$\mathbf{\epsilon}_{\scriptscriptstyle extsf{L}}$	Linearity error		< 0.1		%
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25 °C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C	Typ ± 0.6	Max ± 0.8 ± 0.8	mA mA
t _r di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	00	μs A/μs kHz

General data

$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature	- 25 + 70	°C	
T _s	Ambient storage temperature	- 40 + 85	°C	
$\ddot{R_s}$	Secondary coil resistance @ T _A = 70 °C	15	Ω	
m	Mass	12.1	kg	
	Standards	EN 50178: 199	EN 50178: 1997	

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

 $^{3)}$ With a di/dt of 100 A/ μ s.

Features

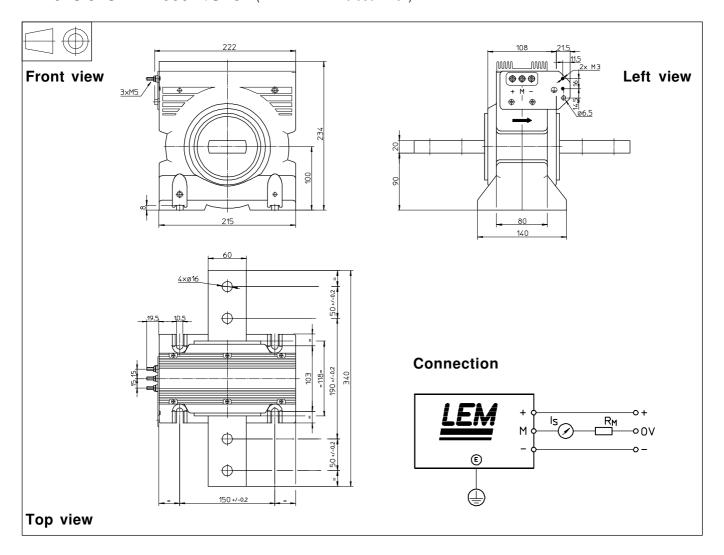
- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 ... \pm 5650 A$
- Internal shield linked to the external shield
- Shield around the secondary connection
- Primary busbar with cylindric mid-section Ø 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070301/6

Dimensions LT 4000-T/SP37 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Recommended fastening torque

• Connection of primary

Recommended fastening torque

Connection of secondary

Recommended fastening torque

• Earth connection

± 1 mm

using primary bar or 4 slots Ø 10.5 mm

4 M10 steel screws

11.5 Nm or 8.48Lb - Ft

4 holes Ø 16 mm

4 M12 steel screws

24.5 Nm or 18 Lb - Ft M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

holes \varnothing 6.5 mm and/

or 2 screws M3

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.