

Current Transducer HASS 50..600-S

For the electronic measurement of currents: DC, AC, pulsed, mixed, with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Primary r current I _{PN} (A	rms meas	nary current suring range I _{PM} (A)	Туре	
50		± 150	HASS 50-S	
100		± 300	HASS 100-S	
200		± 600	HASS 200-S	
300		± 900	HASS 300-S	
400		± 900	HASS 400-S	
500		± 900	HASS 500-S	
600		± 900	HASS 600-S	
V _{OUT}	Analog Output vo	ltage @ I _P	V _{DE} ±(0.625	5. I _P / I _{PN}) V
G _{TH}	Theoretical sensit	ivity	0.625	V/ I _{PN}
V _{REF}	Reference voltage	e ¹⁾ Ouput voltage	2.5 ± 0.025	
		Ouput impedance	ce typ. 200	Ω
		Load impedance	≥ 200	Ω
R	Load resistance		≥ 2	kΩ
R _{OUT}	Output internal resistance		< 5	Ω
C	Capacitive loading (± 20 %)		= 4.7	nF
V _c	Supply voltage (±	5 %) ²⁾	5	V
I _c	Current consumpt	tion @ V _c = 5V	19	mA

Accuracy - Dynamic performance data

x	Accuracy ³⁾ @ I_{PN} , $T_{\Delta} = 25^{\circ}C$		≤±1	%
к Е	Linearity error $0 \dots I_{PN}$		≤±0.5	%
υĽ	0 I _{PM}		≤ ± 1	%
	Temperature coefficient of \mathbf{V}_{OF}	(+25 +85°C)	≤ ± 0.4	mV/K
UE		(-40 +25°C)	\leq ± 0.525	mV/K
	Temperature coefficient of V_{REF}	(+25 +85°C)	\leq ± 0.01	%/K
		(-40 +25°C)	\leq ± 0.015	%/K
TCV _{OE} N _{RI}	Femperature coefficient of V_{OE}/V_{RE}	F	≤ ± 0.15	mV/K
TCG	Temperature coefficient of G		$\leq \pm 0.05\%$ of reading//K	
V	Electrical offect veltage QL = 0.7		M . 0.005	
V _{OE}	Electrical offset voltage @ $I_p = 0$, T	$I_{A} = 25^{\circ}C$	V _{REF} ±0.025	V
	Electrical offset voltage ($\mathbf{I}_{p} = 0$, $\mathbf{I}_{p} = 0$) Magnetic offset voltage ($\mathbf{I}_{p} = 0$)	$I_{A} = 25^{\circ}C$	V _{REF} ±0.025	V
V _{OE} V _{OM}	•	$I_{A} = 25^{\circ}C$	V _{REF} ±0.025 < ± 0.4	v %
	Magnetic offset voltage @ I_P = 0	I _A = 25°C		-
V _{OM}	Magnetic offset voltage (2) $I_p = 0$ after an overload of I_{pM}		< ± 0.4	%
V _{OM} t _{ra} t _r di/dt	Magnetic offset voltage (2) $I_p = 0$ after an overload of I_{PM} Reaction time to 10 % of I_{PN} step		< ± 0.4 < 3	% µs
V _{OM} t _{ra} t _r di/dt	Magnetic offset voltage (2) $I_p = 0$ after an overload of I_{PM} Reaction time to 10 % of I_{PN} step Response time to 90 % of I_{PN} step		< ± 0.4 < 3 < 5	% µs µs
V _{OM} t _{ra} t _r	Magnetic offset voltage (a) $I_p = 0$ after an overload of I_{PM} Reaction time to 10 % of I_{PN} step Response time to 90 % of I_{PN} step di/dt accurately followed	Hz)	< ± 0.4 < 3 < 5 > 100	% µs µs A/µs
V _{OM} t _{ra} t _r di/dt	Magnetic offset voltage (2) $I_p = 0$ after an overload of I_{PM} Reaction time to 10 % of I_{PN} step Response time to 90 % of I_{PN} step di/dt accurately followed Output voltage noise (DC 10 k	Hz)	< ± 0.4 < 3 < 5 > 100 < 20	% μs μs A/μs mVpp

Notes: ¹⁾It is possible to overdrive V_{REF} with an external reference voltage

between 1.5V - 2.8V providing its ability to sink or source approximately 5 mA.

²⁾Maximum supply voltage (not operating) < 6.5 V

³⁾Excluding Offset and Magnetic offset voltage

⁴⁾Small signal only to avoid excessive heatings of the magnetic core.

I_{PN} = 50 .. 600 A

Features

- Hall effect measuring principle
- Galvanic isolation between
 primary and secondary circuit
- Isolation test voltage 3300 V
- Low power consumption
- Single power supply + 5 V
- Fixed offset & Gain
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Easy installation
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference
- Internal & external reference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer HASS 50..600-S

	General data		
TA	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 40 + 85	°C
m	Mass	55	g
	Standards	EN 50178:1997	

Isolation characteristics

 V_{b} Rated isolation voltage rms with following conditions

- -Over voltage category III
- -Pollution degree 2
- -Heterogeneous field

	EN50178	IEC61010-1
Single insulation	600V	600V
Reinforced insulation	300V	150V

V _d	Rms voltage for AC isolation test, 50 Hz, 1 min	3.3	kV
V	Partial discharge extinction voltage rms @ 10 pC	> 1	kV
V	Impulse withstand voltage 1.2/50 µs	6	kV
dCp	Creepage distance	> 5.5	mm
dCl	Clearance distance	> 5.5	mm
СТІ	Comparative Tracking Index (Group I)	> 600	V

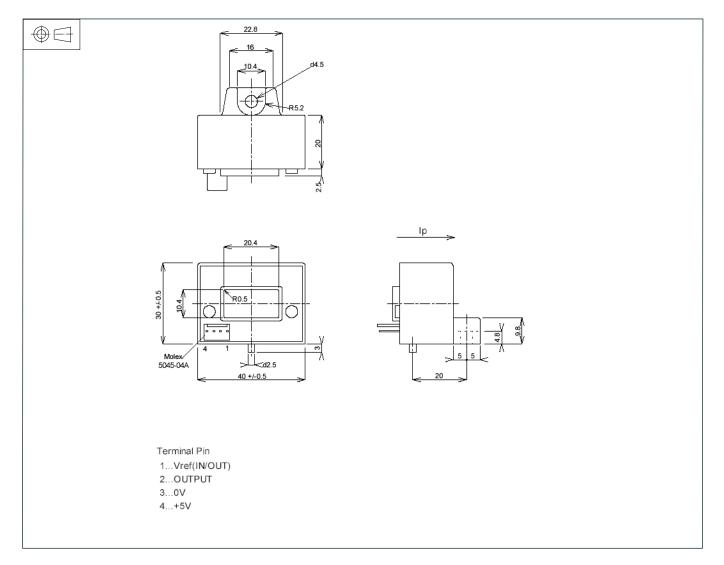
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

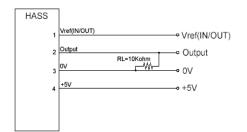
Caution, risk of electrical shock

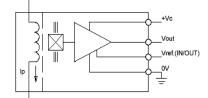
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.


Main supply must be able to be disconnected.


Dimensions HASS 50..600-S (in mm)

Required Connection Circuit

Operation Principle

Mechanical characteristics

- General tolerance
- Aperture for primary conductor 20.4x10.4x0.5mm

± 0.5 mm

- Transducer fastening
- M4 • Recommended fastening torque <1.5N·m
- Connection of secondary Molex 5045-04A

Remarks

- Arrow indicates positive current flow direction.
- Temperature of the primary conductor should not exceed • 100°C.

Page 3/3