

Triaxial Rate Gyro ±1000, ±1200°/sec Range < ±6°/sec Offset Stability

Technical Data*

Features and Benefits

High Accuracy and Linearity over Wide Temperature Range

The voltage output for each axis of the 31207B is directly proportional to the rotational rate along that axis. Each DC-coupled output is fully scaled, referenced, and temperature compensated.

Calibration Certificate

Each 31207B is supplied with a calibration certificate listing sensitivity and offset needed to ensure rapid and efficient system implementation.

Self-Test on Digital Command

A TTL-compatible self-test input causes a simulated rotational rate to be injected into all three sensors to verify channel integrity.

Small Size

Complete conditioned triaxial rate gyro in less than a cubic inch.

Built-In Power Supply Regulation

Unregulated DC power from +8.5 to +36 volts is all that is required to measure rotational rates on all axes.

Suitable for Harsh Environments

The 31207B is robust and can be used in harsh environments. The unit will survive 2000 g powered and unpowered.

Three Year Warranty

Spectrum Sensors' 31207B Triaxial Rate Gyros are covered by a three year return to factory warranty.

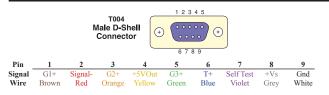
Precisely Measure Real-World Rates

The Spectrum Sensors 31207B Triaxial Rate Gyro is capable of sensing angular rate around three orthogonal axes. Fully temperature compensated analog outputs are available for the X, Y and Z axes.

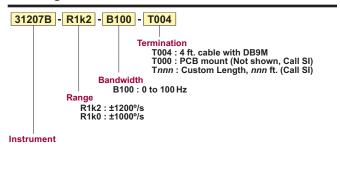
Choose the range option best suited for your application to measure $\pm 1000^{\circ}/\text{sec}$ or $\pm 1200^{\circ}/\text{sec}$ rotational rates on each of three axes.

Each axial sensor has been tested over the -40 to +85°C temperature range and has a nominal full scale output swing of ±2 volts. The zero rate output level is nominally +2.5 volts. Precise values for each axis are available on the included calibration certificate. Custom versions of the 31207B can be provided for applications which require different ranges and/or bandwidths.

 $T_A = T_{MIN} \text{ to } T_{MAX}; \ 8.5 \leq V_S \leq 36 \text{ V}; \text{ Acceleration} = \pm 1 \text{ g}, \text{ Angular Rate} = 0^{\circ}/\text{sec unless otherwise noted}; \text{ within one year of calibration}.$


Parameter	Min	Typical	Max	Units	Conditions/Notes
Range Measurement Full Scale, Option R1k2		±1200†		°/sec	On each axis
Sensitivity at 25°C Option R1k2 Drift T _{MIN} to T _{MAX}		1.7 [†] 2.5		mV/°/sec % FSR	Precise values on cal certificate
Zero g Bias Level At 25°C Drift T _{MIN} to T _{MAX}		2.50 ±3.0	±6.0	V °/sec	Precise values on cal certificate
Alignment Deviation from Ideal Axes		±1.5		degrees	Precise values on cal certificate Can be compensated if required
g Sensitivity		0.2		°/sec/g	Affects offset
Nonlinearity		0.1		% FSR	Best fit straight line
Frequency Response	0		100	Hz	Upper cutoff per Option Bnnn, -3 dB pt ±10%
Self Test Response w/ST pin grounded ±1200°/sec FSR ±1000°/sec FSR		0.145 0.125		V V	±30% may indicate defective axis
Noise Density		0.1		°/sec/√Hz	$T_A = 25$ °C
Self Test Input Impedance	10			kΩ	Pullup. Logic "1"≥3.5 V, Logic "0"≤1.5 V
Temperature Sensor Sensitivity +25°C Bias Level		9.0 2.5		mV/°K V	Precise values on cal certificate
Outputs Output Voltage Swing	0.25		4.75	V	I _{OUT} = 1 mA, Capacitive load < 1000 pF
Power Supply (V _s) Input Voltage Limits Input Voltage - Operating Input Current Rejection Ratio	-20 +8.5	18 >120	+38 +36 30	V V mA dB	-20 V continuous No load, quiescent DC
Temperature Range (T _A)	-40		+85	°C	
Mass		35		grams	
Shock Survival	-2000		+2000	g	Any axis for 0.5 ms, powered or unpowered

[†]Scale linearly with range option Rnnn


Mechanical

³♠ 1○→2 1.115 [28,30] 0.295 [7,50] 0.945 [24,00] 3 mm x 0,5 mm Thread 3,5 mm [0.138] Deep (6) Mounting Holes on 3 sides Dimensions in inches [mm], identical for each view where applicable. 0.295 [7,50]-0.354 Gyros measure rotation around each axis as defined by right hand rule. Two 3 mm x 0.5 mm threaded holes 0.945 0.354 [24,00] [9,0] Cable to 9-pin male D-Shell connector are provided on each of three orthogonal faces for mounting. Shown with 34170B mounting adapter (sold separately)

Connections

Ordering Information

