

Current Transducer HAIS 50..400-P and HAIS 50..100-TP

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical dat

All data are given with a $\mathbf{R}_1 = 10 \text{ k}\Omega$

Ele	ectrical da	ata						
Primary nominal		Primary current Type			RoHS since			
current rms		measuring range			date code			
I	_{PN} (A)	I _{PM} (A)						
	50	± 150	HAIS 50-P, HAIS 5	0-TP ¹⁾	45231, 46272			
	100	± 300	HAIS 100-P, HAIS	100-TP ¹⁾	45231, 46012			
	150	± 450	HAIS 150-P		46172			
	200	± 600	HAIS 200-P		45231			
	400	± 600	HAIS 400-P		47096			
V _{OUT}	Output volt	age (Analog) @ I _P		V _{OF} ±(0.625 [,] I _P /I _{PN})V			
G _{TH}					5 V/I _{PN}			
V _{REF}	Reference	voltage ²⁾ - Output v	voltage	2.5 ±	0.025 V			
		V _{RFF} Output i	impedance ty	/p. 200	Ω			
		V _{REF} Load im		≥ 200	kΩ			
R	Load resist			≥2	kΩ			
R _{out}	Output inte	rnal resistance		< 5	Ω			
C	Capacitive	loading (± 20 %)		=4.7	nF			
V _c	Supply volt	tage (± 5 %) ³⁾		5	V			
I _C	Current co	nsumption @ V_c = :	5 V	19	mA			
Accuracy - Dynamic performance data								
Х	Accuracy 4	@ I _{PN} , T _A = 25°C		≤±1	% of $I_{_{\rm PN}}$			
\mathcal{E}_{L}	Linearity er	rror 0 I _{PM}		≤±0.5	% of I _{PN}			
TCV	Temperatu	re coefficient of V_{OE}		≤±0.3	mV/K			
	F Temperatu	re coefficient of $V_{_{RE}}$	_{.∈.} +25°C+85°C	$\leq \pm 0.0$	1 %/K			
			-40°C+25°C	\leq ± 0.0	15 %/K			
TCV _{OE} /V _R	Temperatu	re coefficient of $V_{_{ m OE}}$	/ V _{ref}	≤±0.2	mV/K			
TCG	Temperatu	re coefficient of G		≤±0.0	5% of reading/K			
\mathbf{V}_{OE}		offset voltage @ I_P =		V _{REF} ±	0.025 V			
V_{OM}	Magnetic o	offset voltage @ I_P =						
	after an ov	erload of I _{PM}	HAIS 50-(T)P	< ± 0.5	PN			
			HAIS 100-(T)P400-F	° <±0.4	% of I _{PN}			
t _{ra}	Reaction ti	me @ 10 % of I _{PN}		< 3	μs			
t _r	Response	time to 90 % of $I_{_{\rm PN}}$	step	< 5	μs			
di/dt	di/dt accura	ately followed		> 100	A/µs			
V _{no}	Output volt	age noise (DC	10 kHz)	< 15	mVpp			
-		(DC	1 MHz)	< 40	mVpp			
BW	Frequency	bandwidth (- 3 dB)	5)	DC 5	60 kHz			

Notes: 1)-TP version is equipped with a primary bus bar.

 $^{\scriptscriptstyle 2)}$ It is possible to overdrive $\boldsymbol{V}_{_{\mathsf{REF}}}$ with an external reference voltage

between 1.5 - 2.8 V providing its ability to sink or source approximately 5 mA.

³⁾ Maximum supply voltage (not operating) < 6.5 V

⁴⁾ Excluding Offset and Magnetic offset voltage.

⁵⁾ Small signal only to avoid excessive heatings of the magnetic core.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice.

ealures

- Hall effect measuring principle
- Galvanic isolation between
 primary and secondary circuit
- Isolation test voltage 2500V
- Low power consumption
- Single power supply +5V
- Fixed offset & gain
- Bus bar version available for 50A and 100A ratings.
- Isolated plastic case recognized according to UL94-V0.

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- V_{REF}. IN/OUT

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial

Current Transducer HAIS 50..400-P and HAIS 50..100-TP

General data

5 °C
5 °C
g
: 1997

Isolation characteristics

 $\mathbf{V}_{_{\mathrm{b}}}$ Rated isolation voltage rms with EN50178, IEC61010-1 standards

at following conditions

- Over voltage category III
- Pollution degree 2
- Heterogeneous field

	EN50178	IEC61010-1
Single insulation	1000V	1000V
Reinforced insulation	600V	300V

V _d	Rms voltage for AC isolation tes	2.5	kV					
V	Partial discharge extinction voltage rms @ 10pC							
-		HAIS 50400-P	> 1	kV				
		HAIS 50100-TP	> 1.4	kV				
Ŷ _w	Impulse withstand voltage 1.2/5	8	kV					
dĈp	Creepage distance	> 8	mm					
dCl	Clearance distance	> 8	mm					
СТІ	Comparative tracking index (Group I)		> 600					
	If insulated cable is used for the primary circuit, the							
	voltage category could be improved with the following table :							
	Cable insulation (primary)	Category						
	HAR 03	450V CAT III						
	HAR 05	550V CAT III						
	HAR 07	650V CAT III						

Safety

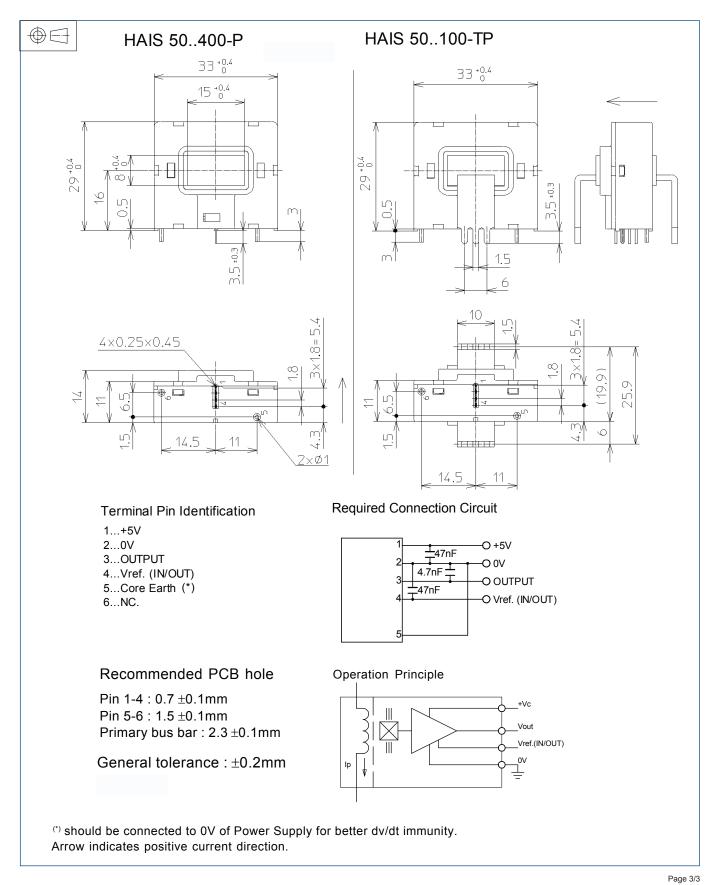
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Page 2/3

Dimensions HAIS 50..400-P and HAIS 50..100-TP (in mm)

