Motor Controllers AC Semiconductor Motor Controller Type RSHL MIDI SMART

- Soft starting and stopping of 3-phase induction squirrel cage motors
- 2-phase control with integral bypassing of semiconductors
- Low inrush and reduced vibration during starting
- Rated operational voltage: up to 600 VAC, 50/60Hz
- Rated operational current: up to 18A AC-53b
- LED status indicators
- Integrated device over-temperature protection*
- Integrated motor over-temperature protection
- Integrated auxiliary relays for end of ramp and alarms
- DIN rail mounting
- Current limit setting for 150%, 250%, 350%, 450% of full load current.
- Integrated overload protection with options for class 10 or class 20
- Monitoring of phase sequence, phase loss and phaseimbalance

Product Description

The RSHL Midi Smart is a compact easy-to-use AC semiconductor motor controller with which 3-phase motors with nominal currents up to 18A can be soft started and/or soft stopped.

The RSHL Midi Smart controls 2 phases only, while the third phase is continously connected to the load. Soft starting and soft stopping is achieved by controlling the motor voltage. During normal running operation (<20A) the semiconductors are bypassed by internal electromechanical relays. Ramp profile, overload

trip class, current limit settings and alarm parameters are user adjustable via the front panel.

Eight LEDs on the front panel indicate the states and alarms of the softstarter. The RSHL MIDI Smart includes an End of ramp auxiliary relay, Alarm auxiliary relay, and overtemperature protection. The RSHL Midi Smart has an integrated Current Limit and Overload Protection. The RSHL Midi Smart comes with an integrated heatsink and is ready to mount on DIN rail.

Ordering Key

RSH L 48 18 C V21

H-line Motor Controller ———————————————————————————————————	
Rated operational voltage	
Rated operational current —	
Control voltage	
Options —	Ш

Type Selection

Туре	Rated Operational Voltage Ue	Rated Operational Current le	Control Voltage Uc	Options
RSHL: H-line motor controller with current limit and motor overload protection	22: 127/220VACrms, 50/60Hz 48: 230/400VACrms, 50/60Hz 277/480VACrms, 50/60Hz 60: 346/600VACrms, 50/60Hz	02: 0.6 - 2 A AC-53b 05: 2 - 5 A AC-53b 12: 4.5 - 12 A AC-53b 18: 5 - 18 A AC-53b	C: 24 - 550 VAC/DC	V21: End of Ramp Relay, Motor Over- Temperature Protection and Alarm Auxiliary Relay. Internal over- temperature protection

^{*} Internal over-temperature protection is only for RSHL...18CV21

Selection Guide

Rated operational	Rated operational current I _e				
voltage Ue	2A AC-53b 5A AC-53b 12A AC-53b 18A AC-53b				
220VACrms	RSHL2202CV21	RSHL2205CV21	RSHL2212CV21	RSHL2218CV21	
400/ 480VACrms	RSHL4802CV21	RSHL4805CV21	RSHL4812CV21	RSHL4818CV21	
600VACrms	RSHL6002CV21	RSHL6005CV21	RSHL6012CV21	RSHL6018CV21	

Conductor Data

Line conductors: L1, L2, L3, T1, T2, T3		Secondary conductors: A1, A2, A3, A4, P1, P2, 34, 31/41, 42	
according to EN 60947-1		according to EN 60998	
flexible	2.5 10mm²	flexible	0.5 1.5mm²
	2.5 2 x 4mm ²	flexible with ferrule	0.5 1.5mm ²
rigid (solid or stranded)	2.5 10mm ²	rigid (solid)	0.5 2.5mm ²
flexible with ferrule	2.5 10mm ²	UL/CSA rated data	AWG2212
UL/CSA rated data		Terminal screws	9xM3 (cage clamp)
flexible	AWG148	Tightening torque	0.5Nm (4.5lb.in) with
	AWG142 x 10		Philips bit 0
rigid (solid or stranded)	AWG148	Stripping length	6.0mm
Terminal screws	6xM4 (cage clamp)		
Tightening torque	2.0Nm (22lb.in) with		
	Posidrive bit 2		
Stripping length	8.0mm		

General Specifications

Form designation	1
Weight	620g (approx.)
Mounting	DIN Rail 35mm
Housing material	Polyamide
	(conforms to UL 94 V0)

Status Relays

Auxiliary relay	
End of ramp	Normally Closed (21:22)
	Normally Open (21:24)
Alarm relay output	Normally Closed (95 : 96)
Auxiliary relay contact capacity	2A, 250VAC
	2A, 30VDC

Supply Specification

Rated operational volta		
Ue through L1, L2 L3	RSHL22	127/220VAC -15% / +10%
	RSHL48	230/400VAC -15%/+10%
		277/480VAC -15%/+10%
	RSHL60	346/600VAC -15%/+10%
Blocking voltage	RSHL 22	800 Vp
	RSHL 48	1200 Vp
	RSHL 60	1600 Vp
Rated AC frequency		50/60Hz ±10%
Rated insulation voltage	Э	630V, accord. to
		EN 60947-1
Dielectric strength		
Dielectric withstand v	oltage	
Supply to input		2.5 kVrms
Supply to heatsink		2.5 kVrms
Supply to external supply		2.5 kVrms
Integrated varistor		yes

Input Specifications

24 - 550 VAC/DC
50/60Hz ±10%
3mA
400 ms
2.5 kVrms
2.5 kVrms

External Supply Specifications

External supply voltage Us,	
A3:A4	24VAC/DC -15% / +10%
Rated AC frequency	50/60Hz ±10%
Rated supply current	250mAAC/DC
Dielectric strength	
Dielectric withstand voltage	
Supply to input	2.5 kVrms
Supply to heatsink	2.5 kVrms

Load Ratings

		RSHL22CV21 / RSHL48CV21	RSHL60CV21
IEC rated operational current le (AC-53b	N BSHI 02CV21	2A	2A
incorated operational current le (AO-33).	RSHL05CV21	5A	5A
	RSHL12CV21	12A	12A
	RSHL18CV21	18A	18A
Overload cycle according to EN/IEC 609)47-4-2 ¹		
@ 40°C surrounding temp.	RSHL02CV21	2: AC-53b : 4-5 : 0	2: AC-53b : 4-5 : 0
	RSHL05CV21	5: AC-53b : 4-5 : 2.4	5: AC-53b : 4-5 : 2.4
	RSHL12CV21	12: AC-53b : 4-5 : 21	12: AC-53b : 4-5 : 26
	RSHL18CV21	18: AC-53b : 4-5 : 62	18: AC-53b: 4-5 : 62
Number of starts per hour @40°C2	RSHL02CV21	360	360
	RSHL05CV21	290	290
	RSHL12CV21	116	100
	RSHL18CV21	50	50
Minimum full load current	RSHL02CV21	0.6 AAC rms	0.6 AAC rms
	RSHL05CV21	1.5 AAC rms	1.5 AAC rms
	RSHL12CV21	4.5 AAC rms	4.5 AAC rms
	RSHL18CV21	5 AAC rms	5 AAC rms

¹ Applicable with the overload profile specified in Overload Cycle and Starting Duty section ² Taken from tables referring to 45mm spacing.

Motor Ratings

IEC rated operational current le (AC-53b)		2A	5A	12A	18A
Assigned motor ratin	ng @60°C/UL				
rating @60°C	220VACrms	0.5kW/ 0.5HP	1.1kW/ 1.5HP	3kW/3HP	4kW/5HP
	400 VACrms	0.75kW/ 0.75HP	2.2kW/3HP	5.5kW/ 7.5HP	7.5kW/ 10HP
	480VACrms	1.1kW/ 1HP	2.2kW/3HP	5.5kW/ 7.5HP	7.5kW/ 10HP
	600VACrms	1.1kW/ 1HP	3kW/5HP	7.5kW/ 10HP	11kW/ 15HP

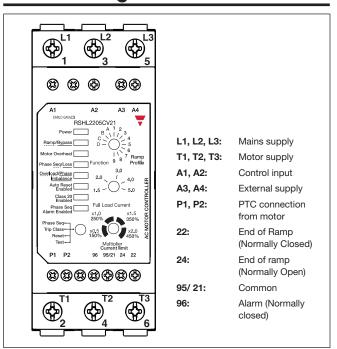
Environmental Specifications

Operating temperature	-20°C to +60°C	Degree of Protection	IP20 (EN/IEC 60529)
	(-4°F to +140°F)	Installation category	III
Storage temperature	-50°C to +85°C	Installation Altitude	Above 1000m derate linearly
	(-58°F to +185°F)		by 1% of unit FLC per 100m
Relative humidity	<95% non-condensing		to a maximum altitude of
	@40°C		2000m
Pollution Degree	2		

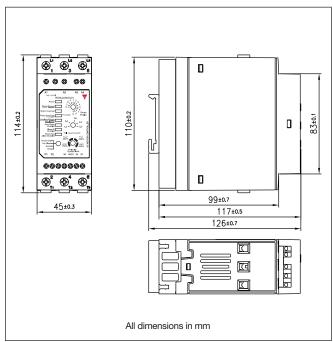
Current Limit Feature

% of full Load Current	Suitable for type of load	Time inrush current is limited (t _{inrush})	Function after (t _{inrush}) and RSHL is not fully ON
150%	Light	5s	Device continue with the
250%	Light	5s	Standard Profile settings
350%	Slightly heavy	10s	(Parameter 1)
450%	Heavy	20s	

Note: In Current Limit Operation, no soft stop is offered. The motor is left coasting when control is removed.

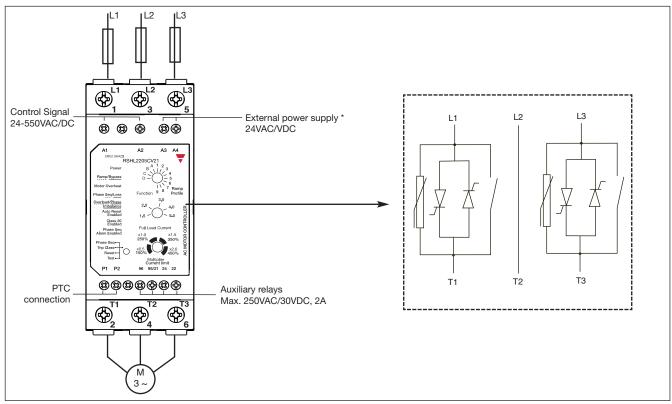


Standards


Approvals	UL (E172877), cUL	Conducted radio-frequency	
CE Marking LVD	IEC/ EN 60947-4-2	immunity	IEC/ EN 61000-4-6, PC1
EMCD : Immunity	IEC/ EN 61000-6-4		10V/m, 0.15-80MHz
Emission	IEC/ EN 61000-6-2	Voltage dips & interruptions	IEC/ EN 61000-4-11
Electrostatic Discharge ESD			100% Ue dip, 20ms, PC2
Immunity	IEC/ EN 61000-4-2		60% Ue dip, 200ms, PC2
	8kV, PC2 Air discharge		30% Ue dip, 500ms, PC3
	4kV, PC2 Contact		100% Ue interruption, 5000ms, PC3
Electrical fast transient/		EN60947-4-2	60% Ue dip, 100ms, PC2
Burst Immunity	IEC/ EN 61000-4-4		60% Ue dip, 1000ms, PC2
Output	2kV, PC2		30% Ue dip, 10ms, PC2
Input	2kV, PC2		100% Ue interruption, 5000ms,PC3
Electrical Surge Immunity	IEC/ EN 61000-4-5, PC2	Radio interference field	01000 44
Outpt, line to line	1kV	emissions (radiated)	CISPR 11
Output, line to earth	2kV		IEC/ EN 55011, Class A
Input, line to line	1kV	Radio interference voltage	
Input, line to earth	1kV	emissions (conducted)	CISPR 11
Radiated Radio Frequency (Does not meet EN61000-6-2-2005 requirements requesting tests up to 2.7GHz)	EN 61000-4-3, PC1 10V/m, 80-1000MHz		IEC/ EN 55011, Class A

Note: EMC testing was performed with the RSHL connected to representative motor loads of 1.1/4.0kW. The EMC performance of the controller would eventually have to be evaluated with the controller connected and fitted as part of the complete system in the end application.

Terminal Diagram



Dimensions

Connection Diagram

^{*} For the 24VDC external supply, CG power supply model SPD24051 can be used

Short circuit Protection (according to EN/IEC 60947-4-2) & UL508

	RSHL02CV21	RSHL05CV21	RSHL22/ 40/ 48 12CV21	RSHL22/ 40/ 48 18CV21
Type of coordination: 1				
Rated short circuit current	10kA when protected	10kA when protected	10kA when protected	10kA when protected
	by RK5 fuses	by RK5 fuses	by RK5 fuses	by RK5 fuses
	TRS 15R (15A)	TRS 15R (15A)	TRS 40R (40A)	TRS 40R (40A)
			RSHL6012CV21	RSHL6018CV21
Type of coordination: 1				
Rated short circuit current			10kA when protected	10kA when protected
			by RK5 fuses	by RK5 fuses
			TRS 35R (35A)	TRS 35R (35A)
	RSHL02CV21	RSHL05CV21	RSHL12CV21	RSHL18CV21
Type of coordination: 2				
Rated short circuit current	10kA when protected	10kA when protected	10kA when protected	10kA when protected
	by semiconductor fuses	by semiconductor fuses	by semiconductor fuses	by semiconductor fuses
Semiconductor fuse	Ferraz Shawmut	Ferraz Shawmut	Ferraz Shawmut	Ferraz Shawmut
	16A, Class URC	25A, Class URC	50A, Class A70QS	60A, Class A70QS
	Art. No. 6.9 CP	Art. No. 6.9 CP	Art. No. A70QS50-4	Art. No. A70QS60-4
	gRC 14.51.16	gRC 14.51 25		

Electronic Overload Relay

Overload Trip Class in accordance to IEC 60947-4-1

Overload Condition	Class 10 (default)	Class 20 (user selected)
@ 1.05xle (cold condition)	trip cannot be within 2 hrs	trip cannot be within 2 hrs
@ 1.2xle (hot condition)	trip has to be within 2 hrs	trip has to be within 2 hrs
@ 1.5xle (hot condition)	trip has to be within 240s	trip has to be within 480s
@ 7.2xle (cold condition)	trip has to be within 4 to 10s	trip has to be within 6 to 20s

Note: Device remembers settings on loss of power but not overload condition.

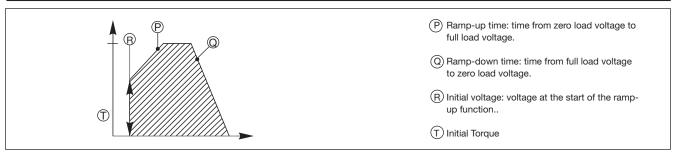
Over-temperature Protection

Reset

	Motor Overho	eat Protection			Soft Starter Protection
Motor PTC connection P1:P2		2	Only available for RSHL18CV21 units. In other models, t		
PTC Resistance			overload protection becomes active before the internal tem- perature protection		
	< 500Ω	No Trip:		Normal Running	
	> 1000Ω	Trip:		Overheat Alarm LED	

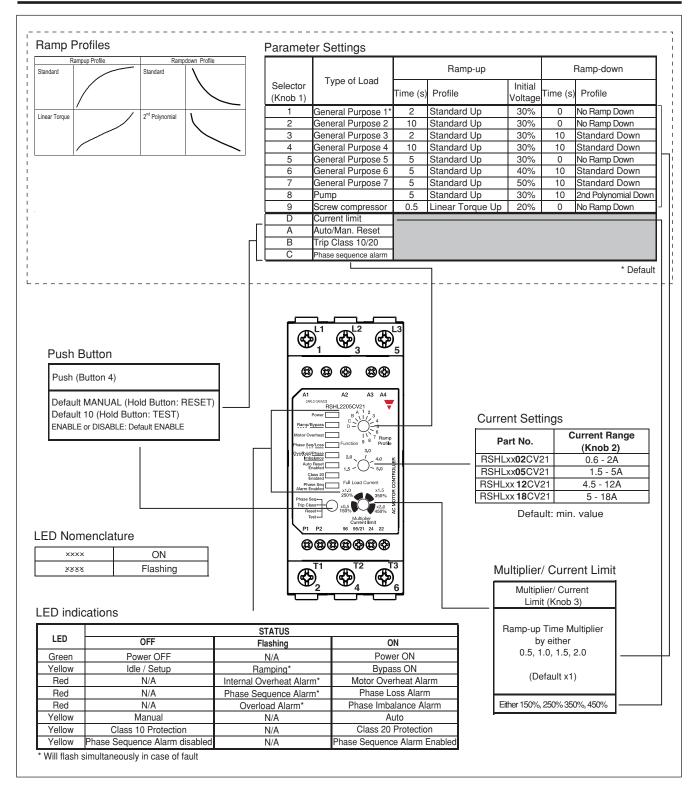
& Alarm Relay Activated

Alarms


< 300Ω

	Phase Loss Alarm	
Alarm Output (Normally	Ramping	Not present
Closed).	Idling (when power supply is	
Available when Phase	ON and Control Input is OFF)	All three phases must be
Sequence Alarm is		present for the device to
enabled. In such condition		operate.
device is disabled and		If any phase is missing,
alarm indicated.2		alarm is indicated.
	Bypass Mode	Device will switch off motor,
		and alarm is indicated
	Phase Imbalance Alarm	
	Bypass Mode ³	In Bypass mode, the
		device will trip if the
		amplitude of the current in
		one phase is greater than
		50% of one of the other
		two phases for 3 seconds.
	Closed). Available when Phase Sequence Alarm is enabled. In such condition device is disabled and	Alarm Output (Normally Closed). Available when Phase Sequence Alarm is enabled. In such condition device is disabled and alarm indicated.² Bypass Mode Phase Imbalance Alarm

Notes:


- 1 Activated in case of phase loss, phase sequence, phase imbalance, overheat and overload conditions, and shorted power devices. The respective LED indicates the type of alarm. During alarm conditions, if RSHL is in the running mode, it will cease to operate or if in the idling mode it will not start.
- 2 To operate the device in reversing mode the Phase Sequence Alarm should be disabled.
- 3 Manual resettable only.

Operational Diagram

Operational Diagram

Mode of Operation

1. Connections

1.1 Power supply

In order to energize the RSHL an **external power supply** (24V AC/DC, 50/60Hz) should be connected between terminals **A3:A4.**

1.2 Control input

The **control input** is to be applied between connections **A1:A2**. The RSHL soft starter supports a control input signal rating of 24-550V AC/DC

1.3 Mains supply

The three wires of the **threephase mains supply** is to be connected in terminals marked **L1**, **L2** and **L3** respectively.

1.4 Motor Connections: windings

The three-phase motor (load) is to be connected with terminals marked T1, T2 and T3. The configuration of insidedelta is not supported in this device.

1.5 Motor Connections: PTC

If the motor is equipped with a PTC device (for the measurement of temperature) it can be connected between terminals P1:P2. PTC Characteristics should be as per DIN44081/2. If motor PTC is not connected, terminals P1 and P2 should be bridged with the link provided. Unconnected P1 and P2 terminals will trigger the motor over temperature alarm.

1.6 End of Ramp and Alarms

The device is equipped with two **auxiliary relay** outputs as follows:

(i) End of Ramp Normally Closed Terminals 21 : 22, Normally Open Terminals 21 : 24 (ii) Alarm Normally Closed Terminals 95 : 96

2. Getting Started

Please refer to the "Operational Diagram"

2.1 Setting the Motor Full Load Current (le)

This is set to the desired level by adjusting the Full Load Current Knob 2. Caution should be taken to set the correct value as this might cause damage in either the device and/or the motor. Unless changing the motor this setting

should never be changed.

2.2 Soft Start/Stop Settings

The user can chose either one of the nine Standard ramping profiles or a Start with Current limit profile. Please refer to the "Operational Diagram"

2.2.1 Selecting a Standard Ramping Profile

The selection of one of the nine Standard Ramping Profiles is made easy by turnina the Ramp Profile/Function (Selector Knob 1) to the desired position according to the selection that is made after referring to Parameter Setting Table in the "Operational Diagram". Example: The desired profile is [ramp up=5s, ramp down=10s, initial torque=30%]. Select Pump by setting the Selector Knob 1 to position 8. Then proceed to set the Multiplier as

2.2.2 Changing the Ramp-up Time of a Standard Ramping Profile

explained in the next step.

The Multiplier/Current Limit Knob 3 allows an increase or reduction of the ramp-up time of the selected Standard Ramping Program.

Example: The selector knob 1 has been set to position 8 and a ramp up time of 10s is desired. The default ramp up of this program is 5s. By setting the Multiplier to position x2.0 the ramp up is time changed to 10s.

2.2.3 Selecting and Setting the Current Limit profile

If Current Limit profile is desired instead of a Standard Ramping **Profile**, this is by setting the selected Ramp Profile/Function Selector Knob 1 to position D. In Current Limit profile the device limits the inrush current during ramp-up to the current limit set by the user. The current limit level is set by turning the Multiplier/Current Limit knob 3 to the desired percentage of Full Load Current (le). The Full Load Current (le) is 10A. The desired current limit is ≤40A. The

Ramp Profile/Function selector

knob 1 is turned to position **D**. The Multiplier knob 3 is turned to 350%. This will set the current limit to 35A which is within the desired range.

2.3 Overload Settings

The **overload functions** are set by using the **selector knob** 1 in combination with the **push button 4**.

2.3.1 Selecting the Trip Class

This device can operate to either Trip Class 10 or Trip Class 20. The overload trip conditions are according to IEC 60947-4-1. These are summarised in the section entitled Electronic Overload Relay. Trip Class 10 is the default setting. To change to Trip Class 20, the Ramp Profile/Function selector knob 1 is turned to position B and the push button 4 is pressed once. The yellow LED marked Class 20 goes ON. To change back to Trip Class 10, the selector knob 1 is turned to position B and the push button 4 is pressed once. The yellow LED marked Class 20 goes OFF.

2.3.2 Setting the Overload Reset Mode (Manual or Automatic)

Manual Reset is the default setting. change To to Automatic Reset, the Selector Knob 1 is turned to position A and the push button 4 is pressed once. The yellow LED marked Auto Reset goes ON. To change back to Manual Reset, the Selector Knob 1 is turned to position A and the push button 4 is pressed once. The yellow LED marked Auto Reset goes OFF.

2.3.3 Overload Function Test

The overload function test works only when the device is idle. This function is not available if the device is either in the running (ramping or bypass) or in the alarm mode. To perform an overload function test, the Selector Knob 1 is turned to position B and the push button 4 is pressed and held down until the device enters the Overload Function Test (approximately 2 seconds). In this condition the red

LED marked **Overload/Phase Imbalance** starts flashing. Further the load is disconnected and the Alarm Relay becomes active.

To exit the **overload function test** the user would need to turn **Selector Knob 1** to any Parameter Setting from 1 to 9 or to Position **D**, and **push button 4** is pressed and held down for approximately 2 seconds until the device exits the Overload Function Test.

2.4 Enabling and Disabling Phase Sequence Monitoring

Phase Sequence monitoring Enabled is the default setting. The yellow LED marked Phase Seq Enable is ON. To disable this function, the Selector Knob 1 is turned to position C and the push button 4 is pressed once. The yellow LED marked Phase Seq Enable goes OFF. To enable this function, the Selector Knob 1 is turned to position C and the push button 4 is pressed once. The yellow LED marked Phase Seq Enable goes ON. When using a reversing relay in combination with this device, this function should be disabled

3. LED Indication

Refer to the section entitled **LED indication**

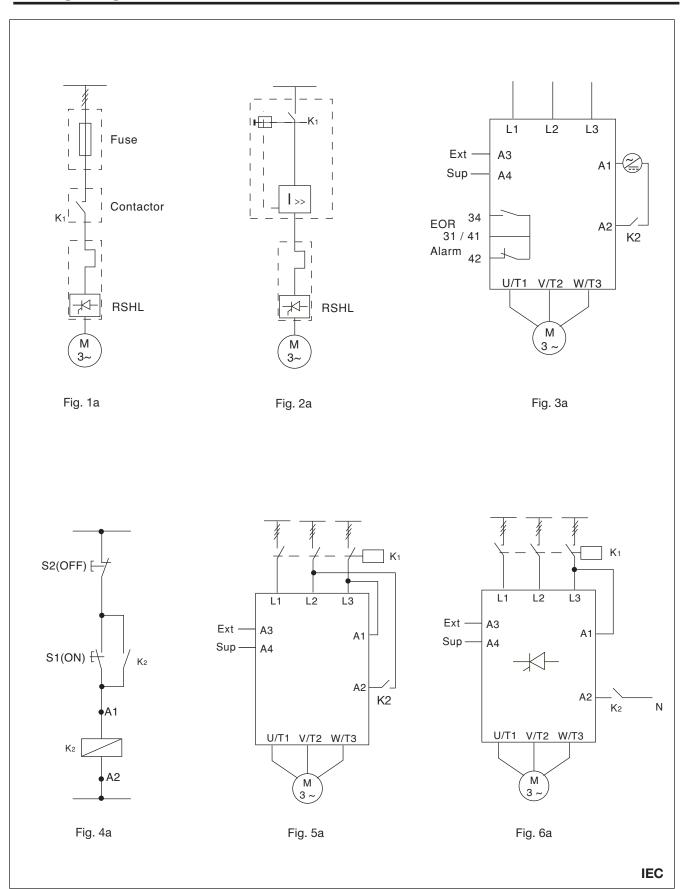
4. Alarms

Refer to the section entitled **Alarms**. Reset of alarms are the same as for the overload as in 2.3.2.

5. Over-temperature Protection

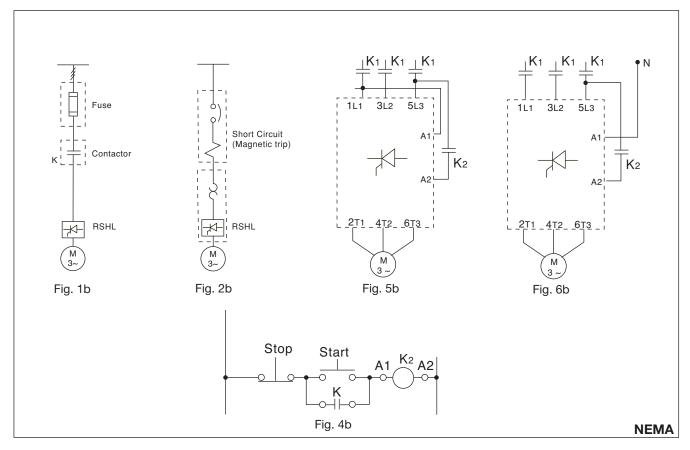
Refer to the section entitled **Over-temperature Protection**.

6. Short-circuit Protection


Refer to the section entitled **Short-circuit Protection**, as in figure 1 of the wiring diagram.

7. Device Malfunction

In the case where the supply LED is ON and the four LED under it are flashing, this would indicate that the device is Faulty and should be returned for servicing.



Wiring Diagram

Wiring Diagram (cont.)

On normal conditions the motor controller provides bypassing of the semiconductors during running operation. case of Overload Conditions (current exceeds 20A) while in bypass mode, semi-conductors are again activated and bypass relays deactivated. Therefore the semiconductors can only be damaged by short-circuit currents during ramping (in normal conditions) or while in overload conditions. Please note that the motor controller does not isolate the motor from the mains.

Figure 1: Protection of the device when using fuses.

Protection with semiconductor fuses is intended to protect the motor feeder and motor controller from damage due to short-circuit. RSHL protects motor load in overload conditions.

Figure 2: Protection using a magnetic trip.

In this configuration, the motor and its feeder are protected for the overload condition by the internal overload protection of the RSHL. However, due to the relatively slow response of the magnetic trip and the in the absence of semiconductior fuses, damage to the motor controller can occur in this circuit topology.

Figure 3: Secondary conductors.

3.1: Control using a 2-position switch.

When K2 is closed, the control input is supplied to A1

and A2 and soft starting of the motor is performed. When K2 is opened, soft stopping is performed.

3.2: Auxiliary Relay

The End of Ramp (EOR) relay 34: 31/41 (Normally Open). If EOR is issued to activate external bypass contactors overload protection will be deactivated as current is shunted away from RSHL. Auxiliary alarm relay 31/41: 42 is NC.

This relay is activated in case of any alarm.

Figure 4: Control using ON and OFF push buttons

Pushing S1 soft starts the RSHL. Pushing S2 soft stops the RSHL. K2 is an auxiliary contact of the mains contactor.

Figure 5: Control using 2 phases

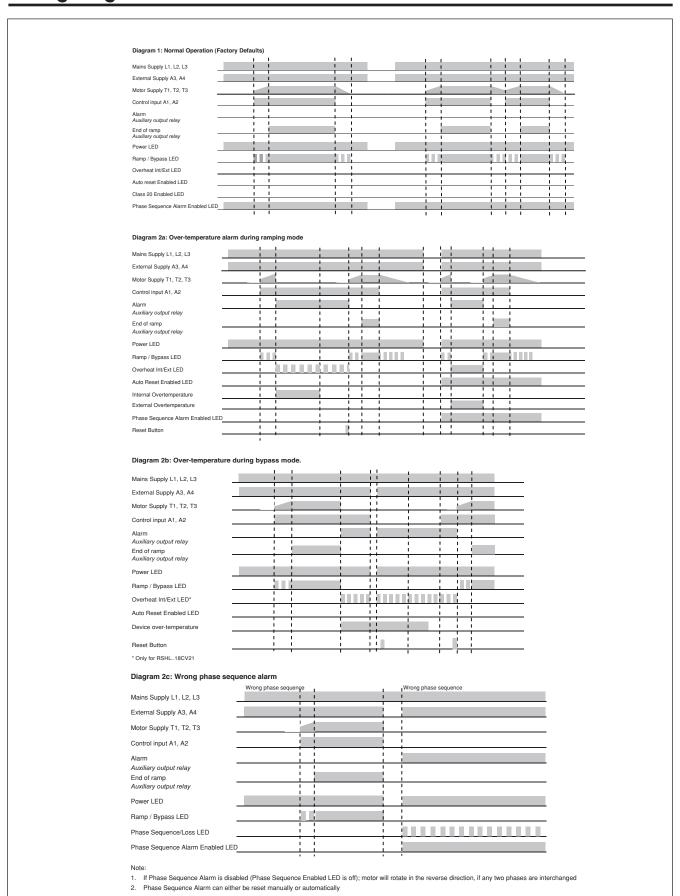

Connecting input A1, A2 to two of the incomming lines will soft start the motor when K2 is operated. When K2 is switched off, the motor will soft stop. This configuration does not apply to the RSHL60.CV21 versions.

Figure 6: Control when using operational voltage greater than 550V

Connecting A1 to Neutral and A2 to one of the incoming phases (or vice-versa) will soft start the motor when K2 is closed. When K2 is opened, the motor will soft stop.

Timing Diagram

Timing Diagram (cont.)

Diagram 2e: Phase Loss during bypass mode

Any or all phases Loss

Any or all phases Loss

Mains Supply L1, L2, L3

External Supply A3, A4

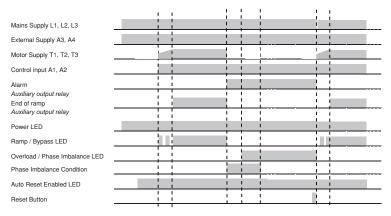
Motor Supply T1, T2, T3

Control input A1, A2

Alarm

Auxiliary output relay
End of ramp

Auxiliary output relay
Power LED

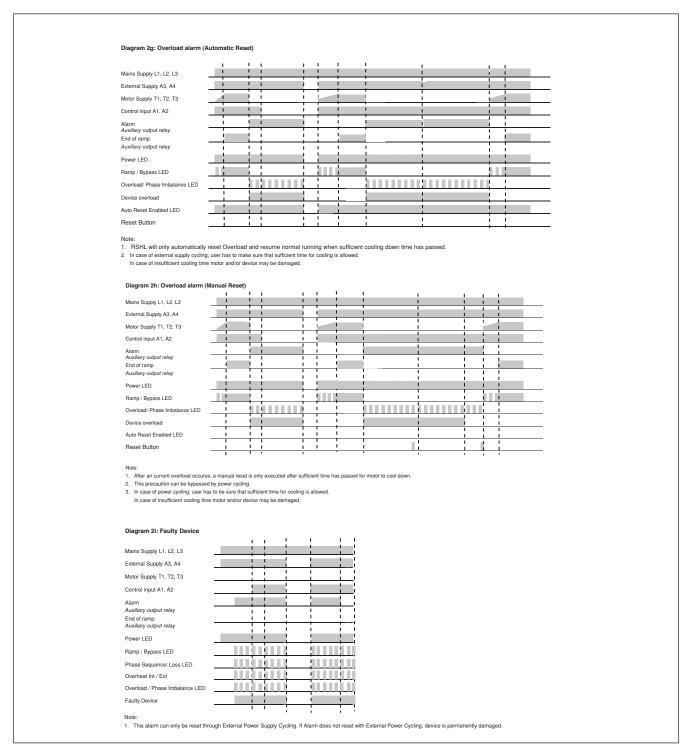

Ramp / Bypass LED

Phase Sequence/ Loss LED

Auto Reset Enabled LED

Reset Button

Diagram 2f: Phase Imbalance while in bypass mode



Note:

- 1. Phase Imbalance Alarm is indicated when the difference in current magnitude between respective phases is greater than 50% for more than 3s
- 2. Phase Imbalance Alarm can only be resetted manually.

Timing Diagram (cont.)

General Notes

Note 1: When a motor PTC is connected, electromagnetic noise may be conducted into the unit. Thus if abnormal function is observed, the use of ferrite beads on the PTC wire (at the end) is recommended.

Note 2: The overload alarm is determined by the Motor Current (Knob 2) setting and selection of the trip class. Please refer to operational diagram.

Note 3: Delay time between the moment of pressing the push button until the actual response is 2s.

Note 4: Since the RSHL Smart is a two-phase control the third-phase (L2 - T2) is always connected, and caution should be always observed.

Overload Cycle & Starting Duty

Overload profile

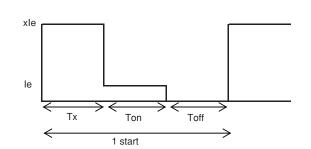
In: AC-53b: x-Tx: OFF time

where: le = nominal current through RSHL

x = overload current as a multiple of le

Tx = duration time for the controlled overload currents during starting

OFF time = minimum OFF time before a subsequent start may be initalated


The following tables indicate the max. allowable no. of starts for Overload Profile:

le: AC-53b: 4-5: OFF time, Ton = 5sec

Example: To find the maximum no. of starts for RSHL4005CV21 at a nominal current of 10A at 50°C with 0mm spacing.

According to Table 1, the maximum no. of starts = 85, hence Overload Profile for this application would be:

10: AC-53b: 4-5: 32, i.e. an OFF time of 32s is required before any subsequent start may be initated

Spacing: 0mm

Table 1: RSHRxxyyCV21, where xx = 22 or 48, yy = 02 or 05

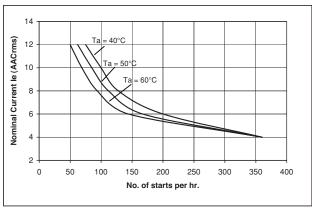
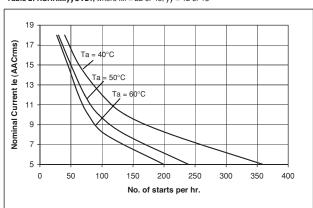
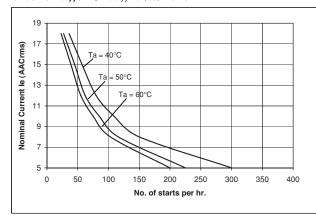




Table 2: RSHRxxyyCV21, where xx = 22 or 48, yy = 12 or 18

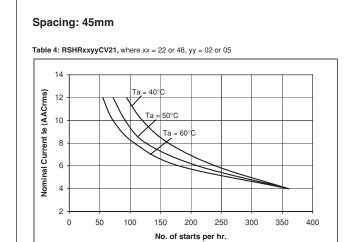


Table 3: RSHR60yyCV21, where yy = 02, 05, 12 or 18

Overload Cycle & Starting Duty (cont.)

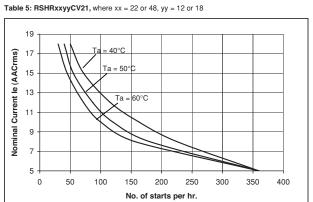
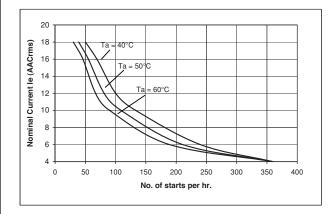
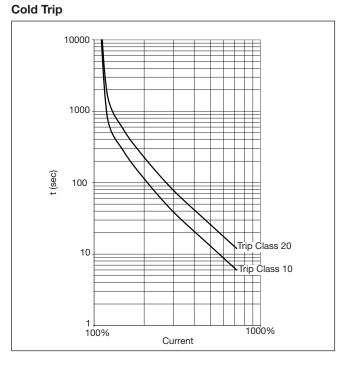
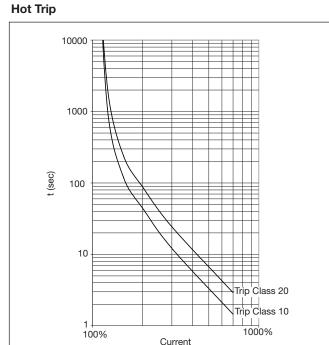



Table 6: RSHR60yyCV21, where yy = 02, 05, 12 or 18




Accessories - External Power Supply 24VDC - SPD 24051

Rated input voltage		100-240	Voltage trim range	21.6 - 28.8VDC
Voltage range	AC	90 - 265VAC	Output voltage accuracy	± 1%
	DC	120 - 370VDC	Output current	0.21A
Frequency range		47 - 63Hz		

For further details refer to Carlo Gavazzi SPD series datasheet

Overload Characteristics

