Energy Management Compact Power Transducer Type CPT-DIN "Basic version"

- RS232 serial port on request
- Alarms (only from serial communication port) V_{LN}, An

- Class 2 (active energy)
- Class 3 (reactive energy)
- Accuracy ±0.5 F.S. (current/voltage)
- Compact Power transducer
- Instantaneous variables data format: 4 digit
- Energies data format: 8+1 digit
- System variables and phase measurements: W, W_{dmd} , W_{dmd} max, var, VA, VA_{dmd}, PF, V, A, An, A_{dmd}, A_{max}, A_{dmd max}, Hz
- Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 90 to 260VAC/DC and 18 to 60VAC/DC
- Protection degree (front): IP20
- Dimensions: 45x83.5x98.5mm
- RS422/485 serial port

Product Description

3-phase compact power transducer. Particularly recommended for the measurements of the main electrical variables.

Housing for DIN-rail mount-

ing, protection degree IP20 as standard, and RS485 or RS232 serial port.

Parameters programmable by means of CptBSoft.

How to order CPT-DIN AV5 3 H S1 BX Model Range code System Power supply Outputs Option

How to order CptBSoft-kit

CptBSoft: software to program the working parameters of the transducer and to read the energy and the instantaneous variables. The kit includes the communication cable.

Type Selection

Range codes	System	Power supply	Outputs
AV5: 400/(690)V _{L-L} /5(6)AAC VL-N: 185 V to 460 V VL-L: 320 V to 800 V AV6: 120/(208)V _{L-L} /5(6)AAC	3: 1, 2 or 3-phase, unbalanced and balanced load, with or without	L: 18 to 60VAC/DC H: 90 to 260VAC/DC	S1: RS485 port S2: RS232 port
VL-N: 45 V to 145 V	neutral 1: 1-3-phase,	(*) Pay attention: the 3-phase measurement is carried out as	Options
VL-L: 78 V to 250 V Phase current: 0.03A to 6A Neutral current: 0.09 to 6A	balanced load (*)	one current and one phase to neutral voltage measurement.	BX: Basic features

Input specifications

Rated inputs Current Voltage	3 (current transformers)	Active energy Reactive energy	0.03A to 0.25A: ±(2% FS+5DGT) Class 2 (I start up: 30mA) Class 3 (I start up: 30mA)
Accuracy (RS485/RS232)	with CT=1 and VT=1 AV5:	Frequency	±0.1Hz (48 to 62Hz)
(@25℃ ±5℃, R.H. ≤60%)	1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var,	Additional errors Humidity	≤0.3% FS, 60% to 90% RH
Current	FS: 57VLN, 100VLL	Temperature drift	≤200ppm/℃
Neutral current	0.25 to 6A: ±(0.5% FS +1DGT) 0.03A to 0.25A: ±(0.5% FS +7DGT) 0.25 to 6A: ±(1.5% FS +1DGT)	Sampling rate	1400 samples/s @50Hz 1700 samples/s @60Hz
	0.09Ato 0.25A: ±(1.5% FS+7DGT)	Measurement refresh time	700ms
Phase-phase voltage	±(1.5% FS + 1DGT)	Measurement format	
Phase-neutral voltage Active and Apparent power, Reactive power	±(0.5% FS + 0.1DGT) 0.25 to 6A: ±(1% FS +1DGT); 0.03A to 0.25A: ±(1% FS+5DGT) 0.25 to 6A: ±(2% FS +1DGT);	Instantaneous variables Energies Hour counter	4 DGT (Max indication: 9999) 9 DGT (Max indication: 999 999 99.9) 7 DGT (Max. indication: 9 999 9.99)

Input specifications (cont.)

Measurements	Current, voltage, power, power factor, frequency, energy, hour counter	400/690V _{L-L} (AV5) 120/208V _{L-L} (AV6) Current	1 MΩ ±5% 453 KΩ ±5% ≤ 0.02Ω
Type	TRMS measurement	Frequency	48 to 62 Hz
Coupling type Crest factor Input impedance	of distorted waves. Direct < 3, max 10A peak	Overload protection Continuos voltage/current For 500ms: voltge/current	(max values) AV5: 460V _{LN} , 800V _{LL} /6A AV6: 145V _{LN} , 250V _{LL} /6A AV5: 800V _{LN} , 1380V _{LL} /36A AV6: 240V _{LN} , 416V _{LL} /36A

Serial Port Specifications

RS422/RS485 Type Connections	Halfduplex communication Multidrop bidirectional (static and dynamic variables) 2 or 4 wires, max. distance 1200m, termination directly	Baud-rate Insulation	no parity, 1 stop bit 9600 bit/s By means of optocuplers, 2kV _{RMS} output to measuring input. 4kV _{RMS} output to power supply
Addresses Protocol Data (bidirectional)	on the instrument 1 to 255 selectable via software MODBUS/JBUS (RTU) System, phase variables and energies All configuration parameters 1 start bit, 8 data bit,	RS232 Type Connections Address Protocol Baud-rate	Halfduplex communication Point to point connection 3-wire, max. distance 15m 1 to 255 selectable via software MODBUS/JBUS (RTU) 9600bits/s other characteristics like R422/RS485 port

RS232 Configuration Bus

Connections Baud-rate Data format	RJ12 (3-wire) for special cable 4800 bits/s 1 start bit, 8 data bit,	Insulation	By means of optocuplers, 2kV _{RMS} output to measuring input.
	no parity, 1 stop bit		4kV _{RMS} output to power supply

CptBSoft: parameter programming and reading data software

CptBSoft	Multi language software to program the working parameters of the transducer and to read the energies and the instantaneous variables. The program runs under Windows 95/98/98SE/2000/NT/XP	Working mode	Two different working modes can be selected: - management of a local RS485 network; - management of communication from a single instrument to PC (RS232);
NT/XP:	Data access	By means of RS232 serial port, RS485 serial port or RS232 configuration port.	

Software functions

System selection	3-ph. with or without N, unbal. 3-phase balanced "1CT + 1VT" 3-phase ARON, unbalanced 2-phase Single phase	Filter action Alarms	Measurements, alarms, serial out. (fundamental var: V, A, W and their derived ones). Programmable, for the VLN∑ and An (neutral gurrent)
Transformer ratio CT VT/PT	1 to 999 1.0 to 99,9		An (neutral current). Note: the alarm is only a status transmitted via communication port.
Filter Operating range Filtering coefficient	0 to 99.9% of the input electrical scale 1 to 16	Reset	Independent alarm (VLN∑, An) max: A dmd, W dmd all energies (Wh, varh) hour counter

Power Supply Specifications

Auxiliary power supply	90 to 260VAC/DC 16 to 60VAC/DC	Power consumption	AC: 4.5 VA DC: 4W
------------------------	-----------------------------------	-------------------	----------------------

General Specifications

Front LED's Power on Diagnostics	Green Green (TX data) Red (RX data)	EMC Emissions	EN61000-6-3, EN60688 residential environment, commerce and light industry
Operating temperature	0°to +50℃ (32°to 122℉) (RH < 90% non condensing)	Immunity	EN61000-6-2 industrial environment.
Storage	-10°to +60℃ (14°to 140℉)	Pulse voltage (1.2/50µs)	EN61000-4-5
temperature	(RH < 90% non condensing)	Safety standards	IEC60664, EN60664
Installation category	Cat. III (IEC 60664, EN60664)	Measurement standards	IEC60688, EN60688
Insulation (for 1 minute)	4kVAC _{RMS} between mesuring inputs and power supply.	Approvals	CE, cURus, cCSAus
		Connections 5(6) A Max cable cross sect. area	Screw-type 2.5 mm ²
	Housing		
	port (RJ12) 4kVAC _{RMS} between	Dimensions (WxHxD) Material	45 x 83.5 x 98.5 mm ABS self-extinguishing: UL 94 V-0
	RS485/RS232/programming	Mounting	DIN-rail
		Protection degree	IP20
Dielectric strength	4kVAC _{RMS} (for 1 min)	Weight	Approx. 200 g (pack. incl.)

Measurements available on the communication port

Variables that can be retrasmitted 3-phase system 4-wire connection

Variables		Notes	
V L1	V L2	V L3	
V L12	V L23	V L31	
A L1	A L2	A L3	
A L1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
An	An alarm		An alarm: neutral current alarm
W L1	W L2	W L3	
PF L1	PF L2	PF L3	
var L1	var L2	var L3	
VA L1	VA L2	VA L3	
VA system	W system	var system	
VA dmd (system)	W dmd (system)	Hz	dmd = demand (integration time selectable from 1 to 30 minutes)
W dmd MAX			Maximum sys power demand
Wh			
varh			
V LL system	V _{LN} alarm	PF system	V _{LN} alarm: alarm status if V _{LN} is not within the two set limits.
A MAX			max. current among the three phases
A dmd max			max. dmd current among the three phases
h			working hour counter

CARLO GAVAZZI

Waveform of the signals that can be measured

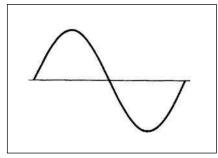
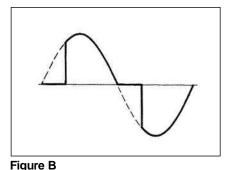
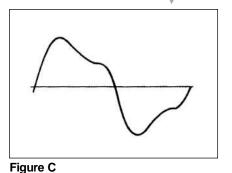
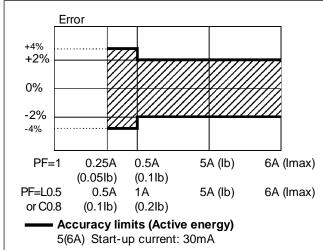
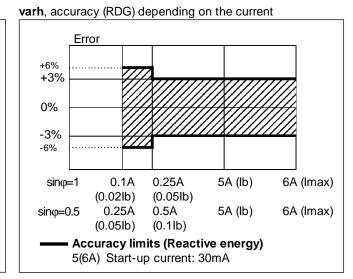




Figure A Sine wave, undistorted Fundamental content 100% Harmonic content 0% 1.1107 | A | $A_{rms} =$


Sine wave, indented Fundamental content 10...100% Harmonic content 0...90% Frequency spectrum: 3rd to 16th harmonic Additional error: <1% FS



Sine wave, distorted Fundamental content 70...90% Harmonic content 10...30% Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5% FS

Accuracy

Wh, accuracy (RDG) depending on the current

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_{i}^{2}}$$

Instantaneous active power

$$W_1 = \frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_i \cdot (A_1)_i$$

Instantaneous power factor

$$\cos \phi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{\Pi} \cdot \sum_{i=1}^{n} (A_1)_i^2}$$

 $A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_1)_i^2}$ Instantaneous apparent power

$$VA_1 = V_{1N} \cdot A_1$$

Instantaneous reactive power

$$VAr_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Equivalent three-phase voltage

$$V_{\Sigma} = \frac{V_{12} + V_{23} + V_{31}}{3}$$
Three-phase reactive power

$$VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$$

Neutral current

$$An = \overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$$

Three-phase active power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Three-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2}$$

$$\begin{aligned} VA_{\Sigma} &= \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2} \\ \text{Three-phase power factor} \\ \cos &\varphi_{\Sigma} &= \frac{W_{\Sigma}}{VA_{\Sigma}} \end{aligned} \tag{TPF}$$

$$kWh_i = \int_{t_1}^{t_2} P_i(t) dt \cong \Delta t \sum_{n_1}^{n_2} P_{n_2}$$

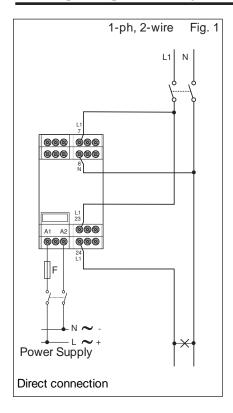
$$k Varh_i = \int_{t_1}^{t_2} Q_i(t) dt \cong \Delta t \sum_{n_1}^{n_2} Q_{n,i}$$

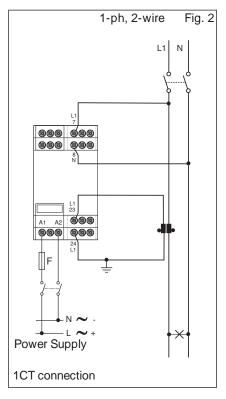
i = considered phase (L1, L2 or L3)

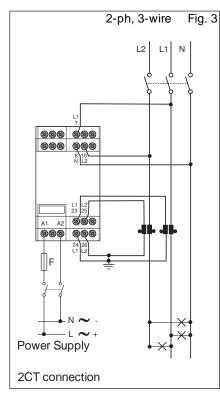
P = active power

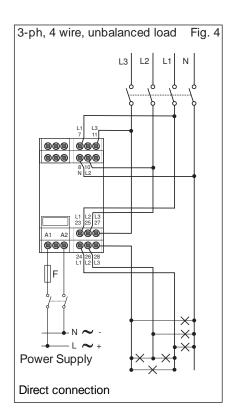
Q = reactive power

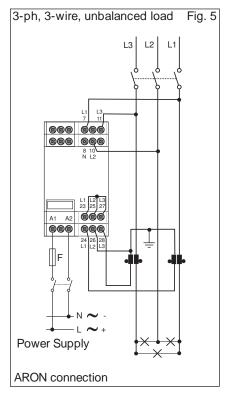
t₁, t₂ =starting and ending time points of consumption recording

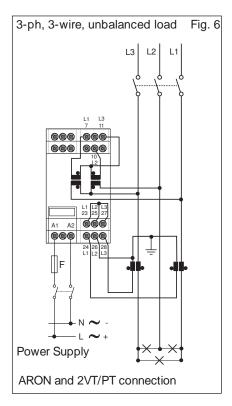

n = time unit


 Δt = time interval between two successive power consumptions

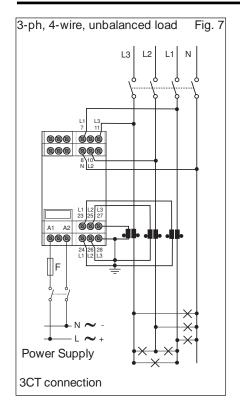

 n_1 , n_2 = starting and ending discrete time points of consumption recording

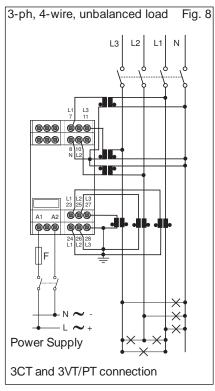

Wiring diagrams "system type selection: 3"

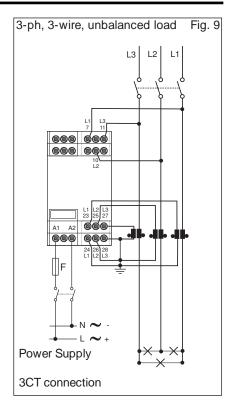


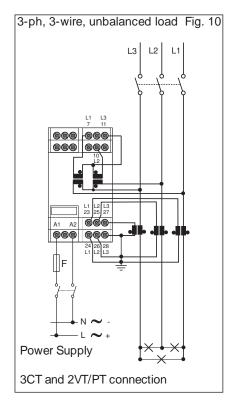


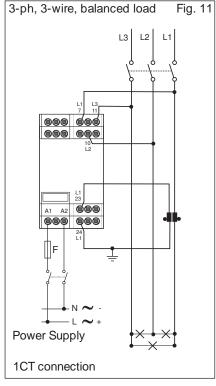
F= 630 mA T (18 to 60VAC/DC) 125 mA T (90 to 260VAC/DC)

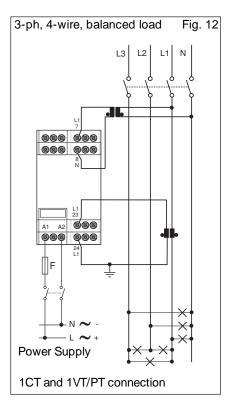




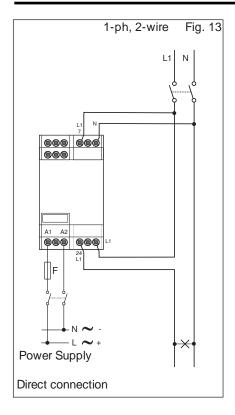


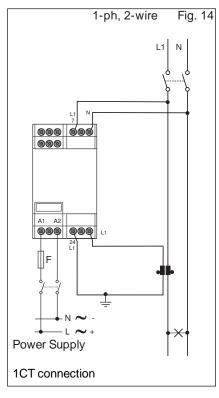

Wiring diagrams "system type selection: 3" (cont.)

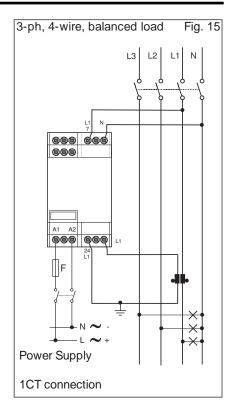


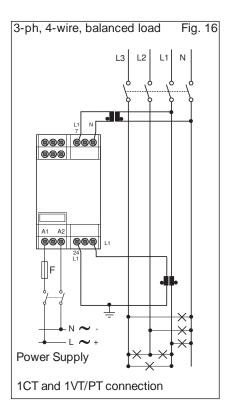


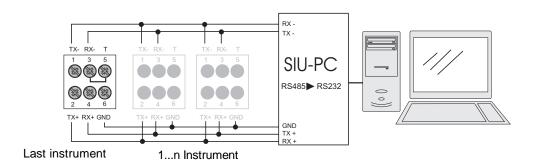
F= 630 mA T (18 to 60VAC/DC) 125 mA T (90 to 260VAC/DC)



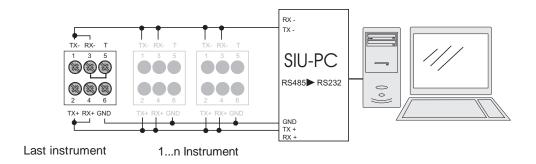





Wiring diagrams "system type selection: 1"



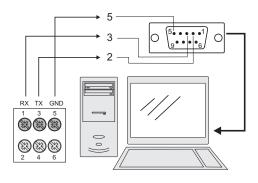
F= 630 mA T (18 to 60VAC/DC) 125 mA T (90 to 260VAC/DC)



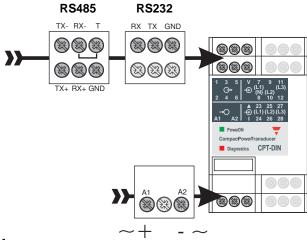
RS485 Serial port connection

4-wire connection of RS485 serial port, the terminalization must be carried out only on the last instrument of the network

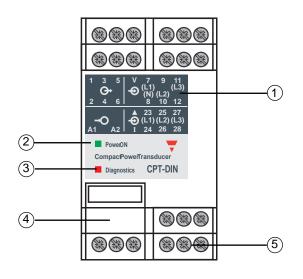
2-wire connection of RS485 serial port, the terminalization must be carried out only on the last instrument of the network


Easy programming

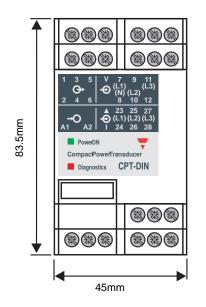
RS232 Serial port connection

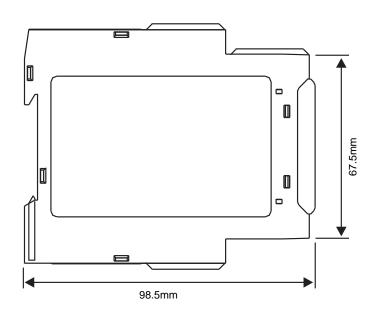

RJ12 communication port for parameters programming. The configuration of the transducer can be easily performed by means of CptBSoft.

CptBSoft-kit includes also a connection cable (RJ12 6 pole + RS232 9 pole female).



Outputs connections




Front Panel Description

- 1. Front panel
- 2. Power ON LED
- 3. Diagnostics LED
- 4. Configuration bus (RJ12 connector)
- 5. Connections screw terminals

Dimensions and Panel Cut-out

