
Thermal Emission Microscope

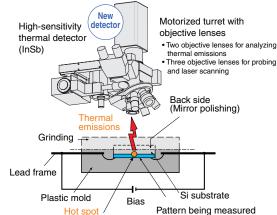
THEMOS series

PHOTON IS OUR BUSINESS

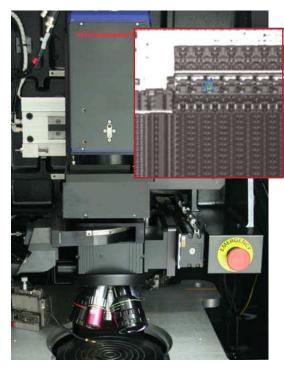
Thermal Emission Microscope

THEMOS Series

The THEMOS series thermal emission microscope is a semiconductor failure analysis system that pinpoints failures by detecting thermal emissions generated within the semiconductor device. The increasing trend toward hyperfine patterns and lower supply voltages in semiconductor devices makes the infrared rays emitted by heat generated from semiconductor failure points fainter and more difficult to detect.


The THEMOS series, which incorporates a high-sensitivity InSb camera, has a flexible product lineup from a simple stand model to an advanced system with an IR confocal laser microscope. With this flexibility, the THEMOS series can test any device from PC boards to chips.

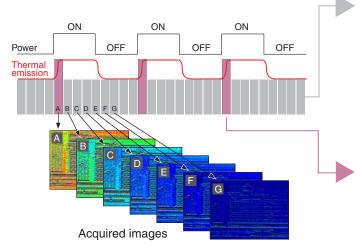
Features


- High sensitivity is achieved by:
 - InSb camera having high sensitivity in the 3 μm to 5 μm wavelength region
 - Lens design optimized for 3 μm to 5 μm wavelengths
 - Low noise using a lock-in function (Optional)
 - High cooling performance by a Stirling cycle cooler
 - Noise equivalent temperature difference (NETD) is 20 mK.
- High resolution is achieved by:
 - InSb camera with 640×512 pixels (Pixel size: 15 μ m)
 - Superimposing a laser pattern image from the IR confocal laser microscope
 - Thermal NanoLens is available. (Optional)
- High speed detection available by *windowing function
- Movie function
- Dynamic measurement available by tester link
- Flexible system structure for micro to macro observation
- User friendly operation identical to PHEMOS and μAMOS series
- Full lineup of optional features

Applications

- Short-circuit of metal wirings
- Abnormality of contact holes
- Microplasma leakage in oxide layer
- Oxide layer breakdown
- TFT-LCD leakage / Organic EL leakage localization
- Observation of temperature abnormalities in devices under development process
- Temperature mapping of devices and PC boards

Thermal emission analysis imaged through the backside

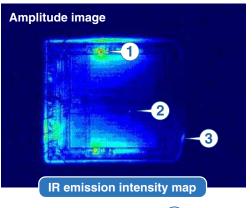

*Windowing function

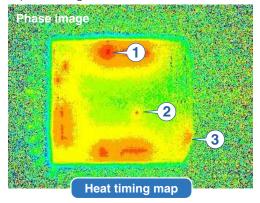
Possible to measure a specific area with high frame rate.

Region of interest	Frame rate
640 pixels × 512 pixels	100 Hz
320 pixels × 240 pixels	200 Hz
160 pixels × 120 pixels	400 Hz
64 pixels × 64 pixels	1000 Hz

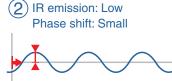
Thermal lock-in measurement

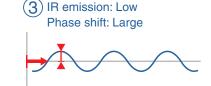
The lock-in measurement method deducts noise by synchronizing the timing of power supply to a device and image capture. With this method, a thermal lock-in unit can provide high quality images even for low voltage devices.

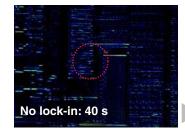


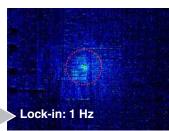



Objective lens: 15x, Bias: 1.0 V, 23 mA


■ Phase image


Possible to localize a heat source by visualizing heat timing from phase images.

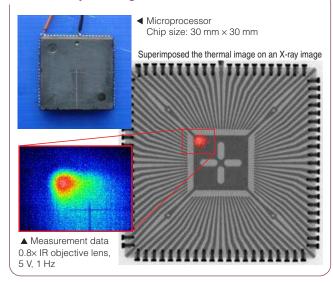


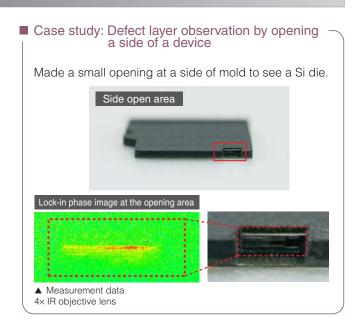

1 and 2 show small phase shift, which means fast heat timing. It indicates a heat source.

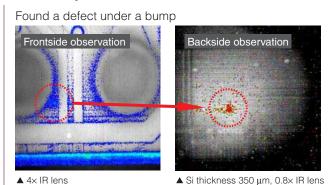
3 shows large phase shift, which indicates diffused heat.

■ Image difference by frequency

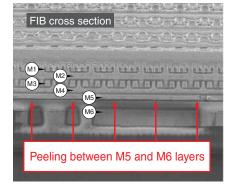
Possible to narrow down the heat source by increasing frequency.



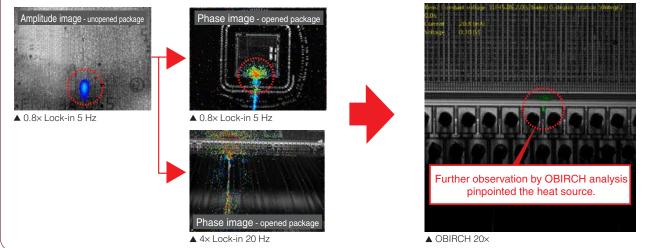


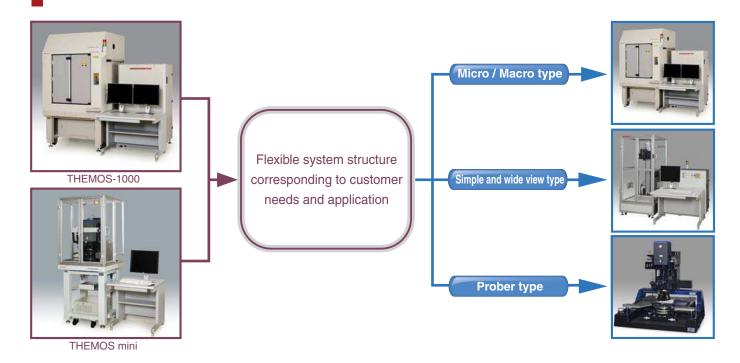

Measurement examples

■ Case study: Package device observation



■ Case study: CMOS observation





■ Case study: Wiring failure between a PCB and a packaged device -

Observed a heat source before opening the package. After opening the package, took phase images to narrow down the heat source.

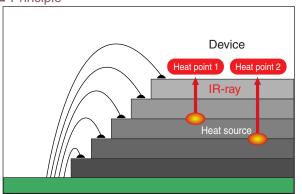
System configurations

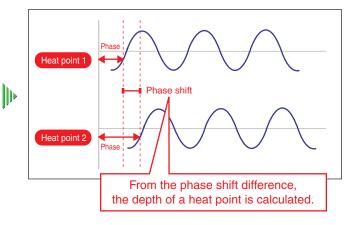
Туре	THEMOS-1000	THEMOS mini	Micro / Macro type*1	Simple and wide view type*1	Prober type*1
C9985-04 InSb camera	V	V	V	V	V
IR confocal laser microscope	V	-	V	-	-
Auto stage control	XYZ	Manual	XYZ	Z	Manual
Standard lens	0.8×, 4×, 15×	0.8×, 4×, 15×	25 mm*2, 0.8×, 4×, 15×	25 mm* ²	0.8×, 4×, 15×
Sample stage*3	PM8, PM8DSP	HPK stage (8-inch)	PM8, PM8DSP	-	PM8, PM8DSP
Eyepiece for probing	V	V	V	-	V
Lens for probing	NIR 5×	5×	NIR 5×	-	5×
Anti-vibration table	V	V	V	-	-
Dark box	V	-	V	-	-
THEMOS analysis software	V	V	V	V	V
FOV (unit: mm)	12 × 9.6 to 0.64 × 0.51	12 × 9.6 to 0.64 × 0.51	125 × 100, 12 × 9.6 to 0.64 × 0.51	<428 × 342	12 × 9.6 to 0.64 × 0.51
Object	Wafer (up to 12-inch) Si die, Package	PCB*4, Wafer (up to 8-inch) Si die, Package	PCB*4, Wafer (up to 8-inch) Si die, Package	PCB*4, PV, LCD	PCB*4, Wafer (up to 8-inch) Si die, Package

^{√:} Standard -: Not available

Functions Simple and Function THEMOS-1000 THEMOS mini Micro / Macro type*1 Prober type*1 wide view type*1 Thermal lock-in measurement Optional Optional Optional Optional Optional 3D-IC measurement Optional Optional Optional Optional Optional Optional Optional Optional Optional Temperature measurement function Thermal NanoLens Optional Optional Optional Optional V Movie function V V V Windowing function V V V External triggering V V V IR-OBIRCH analysis function Optional Optional DALS Optional Optional Photoemission analysis Optional

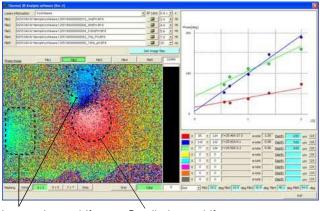
^{*1:} The systems are special order products. *2: The lens for macro observation *3: Please ask Hamamatsu for more details. *4: In the case of integrating 0.29x objective lens


^{√:} Standard -: Not available


^{*1 :} The systems are special order products.

3D-IC measurement function A12319

Possible to detect a heat point and its point of origin within stacked IC layers by using phase images taken by lock-in measurement and calculating them with thermal property information of each layer. If a layer's material information is unknown, it is possible to obtain the information by using a pulse heater. Even with the obtained material information, depth can be measured within a few % error.


Principle

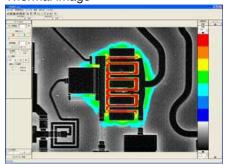
▲ Heat generated from failure points

■ 3D-IC measurement software

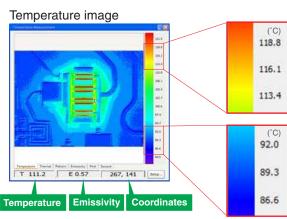
Large phase shift (A heat spot is deep.)

Small phase shift (A heat spot is close to the surface.)

Indicate the depth of a heat point by the heat conductance algorithm and thermal property information of a device material


• Obtain thermal property information using a pulse heater.

It is important to input the correct material information to get an accurate result. When you do not have the thermal property information of a material used in a device, it is possible to obtain that data by measuring the material with a pulse heater.


Temperature measurement function U11389

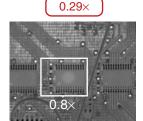
By knowing the true temperature of a device under operation and feeding it back to the design process at an early stage, device verification time can be shortened as well as enhance product reliability. The function is also useful to observe temperature behavior which changes depending on operating environment. The measurement can be available easily by adding the U11389 temperature measurement function.

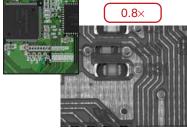
Thermal image

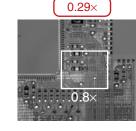
Optics

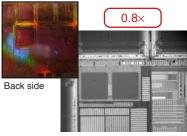
Objective lens Macro lens	N.A.	WD (mm)	FOV (mm)	Standard development
MWIR 0.29×	0.048	12	33 × 26	Optional (THEMOS mini)
MWIR 0.8×	0.13	22	12 × 9.6	V
MWIR 4×	0.52	25	2.4 × 1.9	V
MWIR 8×	0.75	15	1.2 × 0.96	Optional
MWIR 15×	0.71	15	0.64×0.51	V
MWIR 30×	0.71	13	0.32 × 0.26	Optional
M-Plan-NIR 5×: A11315-01	0.14	37.5	2.6 × 2.6	V
M-Plan-NIR 20×: A11315-03	0.4	20	0.65×0.65	√ (THEMOS-1000)
M-Plan-NIR 100×: A11315-05	0.5	12	0.13 × 0.13	√ (THEMOS-1000)

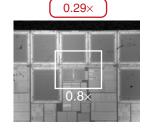
✓ : Standard


Macro analysis


Newly developed 0.29× IR lens provides a clear wide view image without a narcissus phenomenon and shading.




View size comparison



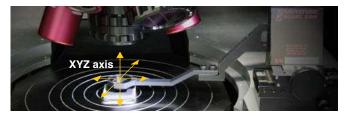
IR confocal laser scan microscope

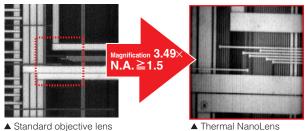
THEMOS-1000 provides high resolution pattern images by integrating an IR confocal laser scan microscope. By overlaying a laser pattern image on a thermal image, heat point can be localized accurately.

1.3 μm Laser diode	Output: 100 mW
1.3 μm High power laser (Option)	Output: 400 mW or more
1.1 μm Pulse laser (Option)	Output: 200 mW (CW), 800 mW (pulse)

^{*} Can't use 2 lasers of the same wavelength.

IR-OBIRCH analysis function A8755


Adding the OBIRCH function for failure analysis allows pinpointing current leakage paths and defective interconnections in LSI devices. This function is expandable to include lock-in OBIRCH analysis and laser-irradiated dynamic analysis by connecting to an LSI tester.


Dynamic analysis by laser stimulation kit (DALS) A9771

Dynamic analysis by laser stimulation (DALS) is a new method to analyze device operation conditions by means of laser radiation. Stimulate a device with a 1.3 µm laser while operating it with test patterns by LSI tester. Then device operation status (pass/fail) changes due to heat generated by the laser. The pass/fail signal change is expressed as an image that indicates the point causing timing delay, marginal defect, etc.

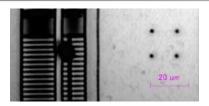
Thermal NanoLens System A11079

The Thermal NanoLens System provides drastic improvements in light correction efficiency and resolution by high N.A.. Microscope immersion oil applied between the sample and lens achieves high N.A. even on samples with poor surface flatness. A manipulator simplifies the NanoLens system design, making it easy to retrofit into your working equipment.

▲ Standard objective lens

LSI tester docking

Semiconductor devices are becoming ever more complicated, which makes it essential to interface with LSI testers to initialize sampling measurement and to set special conditions. Installing a dedicated probe card adapter allows cable docking with LSI testers to perform analysis.


Camera selection for photoemission observation

A full lineup of optional cameras that detect faint photoemission from visible to near infrared light is available. Dual stage structure of THEMOS-1000 allows two-image acquisition (photoemission and thermal emission) without changing sample setting. It saves you time and lab space.

Type No.	Cooling type	Effective number of pixels	Spectral sensitivity
InGaAs camera C8250-21	Liquid nitrogen cooling	640 (H) × 512 (V)	900 nm to 1550 nm
InGaAs camera C8250-27	Peltier cooling	640 (H) × 512 (V)	900 nm to 1550 nm
InGaAs camera C8250-31	Liquid nitrogen cooling	1000 (H) × 1000 (V)	900 nm to 1550 nm
Cooled CCD camera C4880-59	Peltier cooling	1024 (H) × 1024 (V)	300 nm to 1100 nm
Si-CCD camera C11231-01	Peltier cooling	1024 (H) × 1024 (V)	400 nm to 1100 nm

Laser marker C7638

Marking the vicinity of a localized failure point or four points around the failure point makes it easy to transfer position information on that failure point to other analysis equipment.

Utility

	THEMOS-1000	THEMOS mini
Line voltage	AC 220 V (50 Hz/60 Hz)	AC 220 V (50 Hz/60 Hz)
Power consumption	3000 VA	700 VA
Vacuum	Approx. 80 kPa or more	Approx. 80 kPa or more
Compressed air	0.5 MPa to 0.7 MPa	0.5 MPa to 0.7 MPa

Dimensions/Weight (Including option)

	Dimensions/Weight
THEMOS-1000 main unit	1360 mm (W) \times 1410 mm (D) \times 2120 mm (H), Approx. 900 kg
THEMOS control rack	880 mm (W) \times 700 mm (D) \times 1542 mm (H), Approx. 255 kg
PC desk	1000 mm (W) \times 800 mm (D) \times 700 mm (H), Approx. 45 kg

	Dimensions/Weight
THEMOS mini main unit	880 mm (W) × 840 mm (D) × 1993 mm (H), Approx. 450 kg
PC desk	700 mm (W) × 700 mm (D) × 700 mm (H), Approx. 45 kg

LASER SAFETY (THEMOS-1000)

Hamamatsu Photonics classifies laser diodes, and provides appropriate safety measures and labels according to the classification as required for manufacturers according to IEC 60825-1. When using this product, follow all safety measures according to the IEC.

Description Label (Sample)

Caution Label

- ★THEMOS are registered trademark of Hamamatsu Photonics K.K. (France, Germany, Japan, U.K., U.S.A.)
- $\bigstar \, \mathsf{TRUE} \, \mathsf{THERMAL} \, \mathsf{are} \, \mathsf{registered} \, \mathsf{trademark} \, \mathsf{of} \, \mathsf{Hamamatsu} \, \mathsf{Photonics} \, \mathsf{K.K.} \, (\mathsf{En}, \, \mathsf{Japan}, \, \mathsf{U.S.A.})$
- ★ Product and software package names noted in this documentation are trademarks or registered trademarks of their respective manufacturers.
- Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions.
 Specifications and external appearance are subject to change without notice.
 2013 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K. www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Systems Division

812 Joko-cho, Higashi-ku, Hamamatsu City, 431-3196, Japan, Telephone: (81)53-431-0124, Fax: (81)53-435-1574, E-mail: export@sys.hpk.co.jp

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater. N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (39) 16 9 53 71 00, Fax: (33) 16 9 53 71 10 E-mail: info@hamamatsu.fr
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road Welwyn Garden City Hertfordshire AL7 18W, United Kingdom, Telephone: 44-(0)1707-29488, Fax: 44(0)1707-325777 E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Norden AB: Thorshamnsgatan 35 SE-164 40 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Italia: S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it
China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Road North, Chaoyang District, Beijing 100020, China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-6006 E-mail: hpc@hamamatsu.com.cn