

CCD area image sensor

S10140/S10141 series

Low readout noise, high resolution (pixel size: $12 \mu m$)

The S10140/S10141 series is a family of back-thinned FFT-CCD image sensors specifically designed for low-light-level detection in scientific applications. By using the binning operation, the S10140/S10141 series can be used as a linear image sensor having a long aperture in the direction of the device length. This makes the S10140/S10141 series ideally suited for use in spectrophotometry. The binning operation offers significant improvement in S/N and signal processing speed compared with conventional methods by which signals are digitally added by an external circuit. The S10140/S10141 series also features low noise and low dark signal (MPP mode operation). This enables low-light-level detection and long integration time, thus achieving a wide dynamic range.

The S10140/S10141 series has an effective pixel size of 12 \times 12 μm and is available in image areas ranging from 12.288 (H) \times 1.464 (V) mm² (1024 \times 122 pixels) up to a large image area of 24.576 (H) \times 6.072 (V) mm² (2048 \times 506 pixels).

Features

- **■** Low readout noise: 4 e⁻ rms typ.
- → High resolution: pixel size 12 × 12 μm
- Non-cooled type: S10140 series
 One-stage TE-cooled type: S10141 series
- ➡ Line, pixel binning, area scanning
- ➡ Greater than 90% quantum efficiency at peak sensitivity wavelength
- → Wide spectral response range
- **■** Wide dynamic range
- **■** MPP operation
- High UV sensitivity with good stability
- **■** Same pin connections as S7030/S7031 series

- Applications

- **➡** Fluorescence spectrometer, ICP
- Industrial inspection requiring
- Semiconductor inspection
- **DNA** sequencer
- Low-light-level detection
- Raman spectroscopy

Selection guide

Type no.	Cooling	Number of total pixels	Number of	Image size	Suitable multichannel
.,,,			effective pixels	[mm (H) × mm (V)]	detector head
S10140-1007		1044 × 128	1024×122	12.288 × 1.464	
S10140-1008	Non-cooled	1044 × 256	1024×250	12.288 × 3.000	
S10140-1009		1044 × 512	1024×506	12.288 × 6.072	C10150
S10140-1107		2068 × 128	2048 × 122	24.576 × 1.464	C10130
S10140-1108		2068 × 256	2048 × 250	24.576 × 3.000	
S10140-1109		2068 × 512	2048 × 506	24.576 × 6.072	
S10141-1007S		1044 × 128	1024 × 122	12.288 × 1.464	
S10141-1008S		1044 × 256	1024 × 250	12.288 × 3.000	
S10141-1009S	One-stage	1044 × 512	1024 × 506	12.288 × 6.072	C10151
S10141-1107S	TE-cooled	2068 × 128	2048 × 122	24.576 × 1.464	C10131
S10141-1108S		2068 × 256	2048 × 250	24.576 × 3.000	
S10141-1109S		2068 × 512	2048 × 506	24.576 × 6.072	

Note: Two-stage TE-cooled type (S7032-1006/-1007) is available upon request (made-to-order product).

Structure

Parameter	S10140 series	S10141 series		
Pixel size (H × V)	12 × 12 μm			
Vertical clock phase	2 ph	ases		
Horizontal clock phase	2 phases			
Output circuit	One-stage MOSFET source follower			
Package	24-pin ceramic DIP (refer to dimensional outlines)			
Window*1	Quartz glass* ²	AR-coated sapphire*3		

^{*1:} Temporary window type (ex. S10140-1107N) is available upon request.

→ Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating temperature*4	Topr	-50	-	+50	°C
Storage temperature	Tstg	-50	-	+70	°C
Output transistor drain voltage	Vod	-0.5	-	+30	V
Reset drain voltage	VRD	-0.5	-	+18	V
Vertical input source voltage	Visv	-0.5	-	+18	V
Horizontal input source voltage	VISH	-0.5	-	+18	V
Vertical input gate voltage	VIG1V, VIG2V	-10	-	+15	V
Horizontal input gate voltage	VIG1H, VIG2H	-10	-	+15	V
Summing gate voltage	Vsg	-10	-	+15	V
Output gate voltage	Vog	-10	-	+15	V
Reset gate voltage	VRG	-10	-	+15	V
Transfer gate voltage	VTG	-10	-	+15	V
Vertical shift register clock voltage	VP1V, VP2V	-10	-	+15	V
Horizontal shift register clock voltage	VP1H, VP2H	-10	-	+15	V

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

□ Operating conditions (MPP mode, Ta=25 °C)

Parameter			Symbol	Min.	Тур.	Max.	Unit	
Output transistor of	drain voltage		Vod	23	24	25	V	
Reset drain voltage	e		Vrd	11	12	13	V	
Output gate voltage	je		Vog	2.5	3	3.5	V	
Substrate voltage			Vss	-	0	-	V	
	vertical input s	ource	Visv	-	Vrd	-	V	
Test point	horizontal input source		VISH	-	Vrd	-	V	
rest point	vertical input g	ate	VIG1V, VIG2V	-9	-8	-	V	
	horizontal input gate		VIG1H, VIG2H	-9	-8	-	V	
Vertical shift register		High	VP1VH, VP2VH	2.5	3	3.5	V	
clock voltage		Low	VP1VL, VP2VL	-9	-8	-7	٧	
Horizontal shift re	gister	High	VP1HH, VP2HH	4	5	6	V	
clock voltage		Low	VP1HL, VP2HL	-9	-8	-7	V	
Cumming gate vel	tago	High	Vsgh	4	5	6	V	
Summing gate vol	lage	Low	Vsgl	-9	-8	25 13 3.5 - - - - - - 3.5 -7 6 -7	V	
Docet gate veltage		High	VRGH	4	5	6	V	
Reset gate voltage	:	Low	VRGL	-9			V	
T C High		High	VTGH	2.5	3	3.5	V	
Transfer gate volta	ige	Low	VTGL	-9	-8	-7	V	
External load resis	tance		RL	90	100	110	kΩ	

^{*2:} Resin sealing

^{*3:} Hermetic sealing

^{*4:} Package temperature (S10140 series), chip temperature (S10141 series)

➡ Electrical characteristics (Ta=25 °C)

Param	Symbol	Min.	Тур.	Max.	Unit		
Signal output frequency		fc	-	250	500	kHz	
	S1014*-1007		-	800	-		
Vertical shift register	S1014*-1008/-1107	CD1V CD2V	-	1600	-	nE	
capacitance	S1014*-1108/-1009	CP1V, CP2V	-	3200	-	pF	
,	S1014*-1109		-	6400	-		
Horizontal shift register	S1014*-1007/-1008/-1009	Ср1н, Ср2н	-	80	-	nE	
capacitance	S1014*-1107/-1108/-1109	CPIH, CPZH	-	150	-	pF	
Summing gate capacitance		Csg	-	30	-	pF	
Reset gate capacitance		Crg	-	30	-	pF	
Transfer gate canacitance	S1014*-1007/-1008/-1009	Стс	-	50	-	nE	
Transfer gate capacitance	S1014*-1107/-1108/-1109	CIG	-	70	-	- pF	
Charge transfer efficiency*5		CTE	0.99995	0.99999	-	-	
DC output level*6	Vout	16	17	18	V		
Output impedance*6	Zo	-	8	-	kΩ		
Power consumption*6 *7		Р	-	4	-	mW	

^{*5:} Charge transfer efficiency per pixel, measured at half of the full well capacity

ـ Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

Parameter			Symbol	Min.	Тур.	Max.	Unit
Saturation output voltage	е		Vsat	-	Fw × Sv	-	V
		Vertical		45	60	-	
Full well capacity		Horizontal	Fw	120	150	-	ke-
		Summing		150	200	-	
CCD node sensitivity			Sv	4	5	6	μV/e-
Dark current*8		25 °C	DS	-	30	300	o-/piyol/o
MPP mode	MPP mode 0 °C		DS	-	3	30	e ⁻ /pixel/s
Readout noise*9		•	Nr	-	4	18	e- rms
Dynamic range*10	Line b	inning	DR	30000	37500	-	-
Dynamic range	Area s	canning		15000	18500	-	-
Photoresponse nonunifo	rmity*11		PRNU	-	±3	±10	%
Spectral response range			λ	-	200 to 1100	-	nm
	Point de	White spots		-	-	0	-
Blemish	FOIL OF	Black spots		-	-	10	-
	Cluster	defect*13	_	-	-	3	-
	Column	Column defect*14		-	_	0	_

^{*8:} Dark current nearly doubles for every 5 to 7 $^{\circ}\text{C}$ increase in temperature.

Photoresponse nonuniformity = $\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Signal}} \times 100 \, [\%]$

*12: White spots

Pixels whose dark current is higher than 1 ke⁻ after one-second integration at 0 °C.

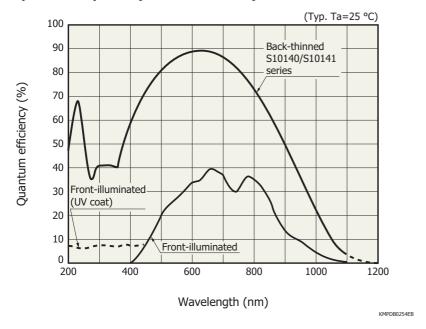
Black spots

Pixels whose sensitivity is lower than one-half of the average pixel output. (Measured with uniform light producing one-half of the saturation charge)

*13: 2 to 9 contiguous defective pixels

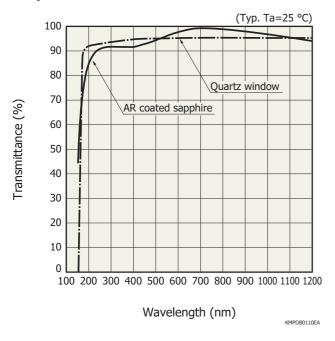
*14: 10 or more contiguous defective pixels

^{*6:} The values depend on the load resistance. (Typ. VoD=24 V, Load resistance=100 $k\Omega$)

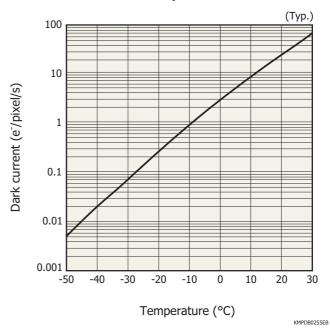

^{*7:} Power consumption of the on-chip amplifier plus load resistance

^{*9: -50 °}C, operating frequency=20 kHz.

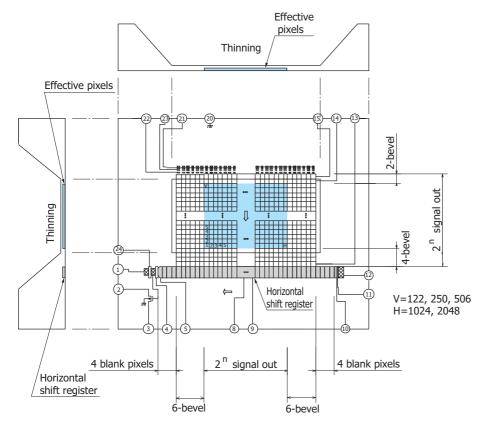
^{*10:} Dynamic range = Full well/Readout noise


^{*11:} Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 560 nm)

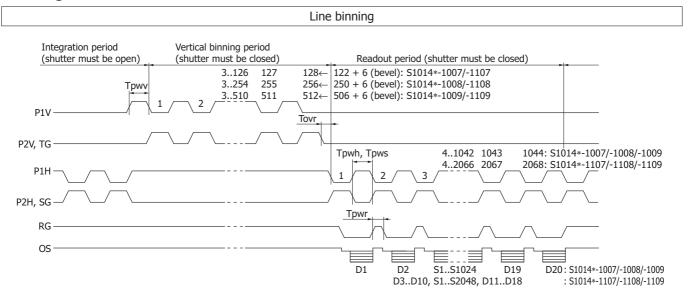
Spectral response (without window)*15



*15: Spectral response with quartz glass or AR-coated sapphire are decreased according to the spectral transmittance characteristics of window material.


Spectral transmittance characteristics

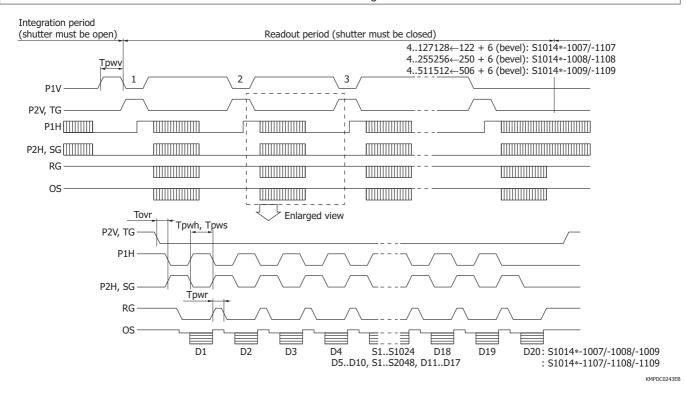
- Dark current vs. temperature


Device structure (conceptual drawing of top view)

Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed.

KMPDC0244EC

- Timing chart

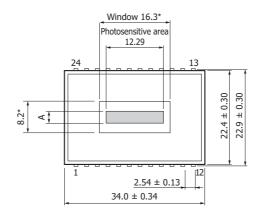


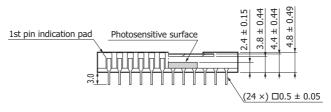
KMPDC0242EB

	Parameter		Symbol	Min.	Тур.	Max.	Unit
		S1014*-1007	_	1.5	2	-	
	Pulse width	S1014*-1008/-1107		3	4	-	
P1V, P2V, TG*16	Pulse width	S1014*-1009/-1108	Tpwv	6	8	-	μS
		S1014*-1109		12	16	-	
	Rise and fall	times	Tprv, Tpfv	20	-	- μs - ns - n	
	Pulse width	Pulse width		1000	2000	-	ns
P1H, P2H*16	Rise and fall	Rise and fall times		10	-	-	ns
	Duty ratio	Duty ratio		40	50	60	%
	Pulse width		Tpws	1000	2000	-	ns
SG	Rise and fall	times	Tprs, Tpfs	Tpwv	ns		
	Duty ratio	Duty ratio		40	1.5 2 -		
RG	Pulse width	Pulse width		100	1000	-	ns
KG	Rise and fall times		Tprr, Tpfr	5	-	-	ns
TG – P1H	Overlap time	!	Tovr	1	2	-	μs

^{*16:} Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

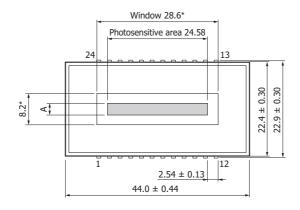
Area scanning

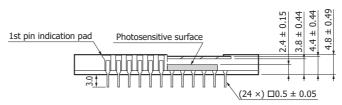

Р	arameter		Symbol	Min.	Тур.	Max.	Unit
		S1014*-1007		1.5	2	-	
	Pulse width	S1014*-1008/-1107	Town	3	4	-	
P1V, P2V, TG*17	Puise widui	S1014*-1009/-1108	Tpwv	6	8	-	μS
, ,		S1014*-1109		12	16	-	
	Rise and fall	times	Tprv, Tpfv	20	2		
	Pulse width		Tpwh	1000	2000	-	ns
P1H, P2H* ¹⁷	Rise and fall times		Tprh, Tpfh	10	-	-	ns
	Duty ratio		-	40	50	- I	%
	Pulse width		Tpws	1000	2000	-	ns
SG	Rise and fall times		Tprs, Tpfs	10	-	-	ns
	Duty ratio	Duty ratio		40	50	60	%
RG	Pulse width	Pulse width		100	1000	-	ns
KG	Rise and fall	times	Tpws 1000 2000 - ns Tprs, Tpfs 10 - - ns - 40 50 60 % Tpwr 100 1000 - ns Tprr, Tpfr 5 - - ns	ns			
TG – P1H	Overlap time	2	Tovr	1	2	-	μs


 $^{^{\}star}$ 17: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outline (unit: mm)

S10140-1007/-1008/-1009



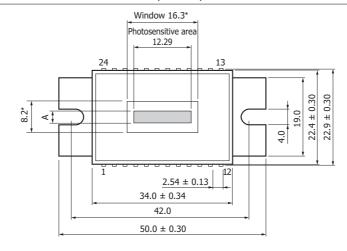


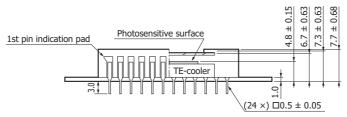
S10140-1007: A=1.464 S10140-1008: A=3.000 S10140-1009: A=6.072

KMPDA0207EB

S10140-1107/-1108/-1109

S10140-1107: A=1.464 S10140-1108: A=3.000 S10140-1109: A=6.072

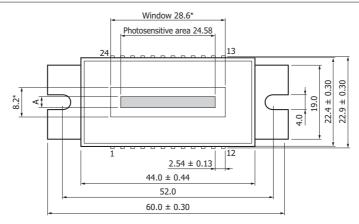

KMPDA0208EB

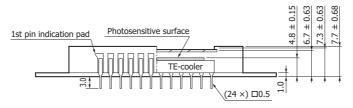


^{*} Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph.

^{*} Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph.

S10141-1007S/-1008S/-1009S





S10141-1007S: A=1.464 S10141-1008S: A=3.000 S10141-1009S: A=6.072

KMPDA0209EC

S10141-1107S/-1108S/-1109S

S10141-1107S: A=1.464 S10141-1108S: A=3.000 S10141-1109S: A=6.072

 $^{^{\}ast}$ Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph.

KMPDA0210EC

^{*} Size of window that guarantees the transmittance in the "Spectral transmittance characteristics" graph.

S10140/S10141 series

₽ Pin connections

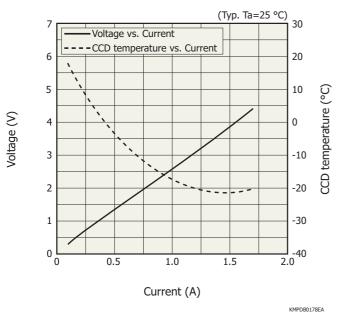
Pin	S10140 series			S10141 series	Remark
no.	Symbol	Function	Symbol	Function	(standard operation)
1	RD	Reset drain	RD	Reset drain	+12 V
2	OS	Output transistor source	OS	Output transistor source	RL=100 kΩ
3	OD	Output transistor drain	OD	Output transistor drain	+24 V
4	OG	Output gate	OG	Output gate	+3 V
5	SG	Summing gate	SG	Summing gate	Same pulse as P2H
6	-		-		
7	-		-		
8	P2H	CCD horizontal register clock-2	P2H	CCD horizontal register clock-2	
9	P1H	CCD horizontal register clock-1	P1H	CCD horizontal register clock-1	
10	IG2H	Test point (horizontal input gate-2)	IG2H	Test point (horizontal input gate-2)	-8 V
11	IG1H	Test point (horizontal input gate-1)	IG1H	Test point (horizontal input gate-1)	-8 V
12	ISH	Test point (horizontal input source)	ISH	Test point (horizontal input source)	Connect to RD
13	TG*18	Transfer gate	TG*18	Transfer gate	Same pulse as P2V
14	P2V	CCD vertical register clock-2	P2V	CCD vertical register clock-2	
15	P1V	CCD vertical register clock-1	P1V	CCD vertical register clock-1	
16	-		Th1	Thermistor	
17	-		Th2	Thermistor	
18	-		P-	TE-cooler-	
19	-		P+	TE-cooler+	
20	SS	Substrate (GND)	SS	Substrate (GND)	GND
21	ISV	Test point (vertical input source)	ISV	Test point (vertical input source)	Connect to RD
22	IG2V	Test point (vertical input gate-2)	IG2V	Test point (vertical input gate-2)	-8 V
23	IG1V	Test point (vertical input gate-1)	IG1V	Test point (vertical input gate-1)	-8 V
24	RG	Reset gate	RG	Reset gate	

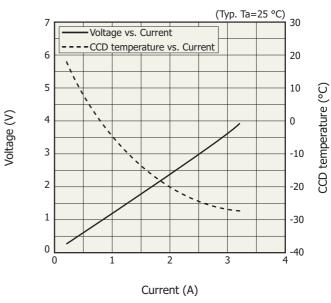
^{*18:} Isolation gate between vertical register and horizontal register. In standard operation, TG should be applied the same pulse as P2V.

► Specifications of built-in TE-cooler (Typ.)

Parameter	Symbol	Condition	S10141-1007S/-1008S/-1009S	S10141-1107S/-1108S/-1109S	Unit
Internal resistance	Rint	Ta=25 °C	2.5	1.2	Ω
Maximum current*19	Imax	Tc*20=Th*21=25 °C	1.5	3.0	Α
Maximum voltage	Vmax	Tc* ²⁰ =Th* ²¹ =25 °C	3.8	3.6	V
Maximum heat absorption*21	Qmax		3.4	5.1	W
Maximum temperature of heat radiating side	-		70	70	°C

^{*19:} If the current greater than this value flows into the thermoelectric cooler, the heat absorption begins to decrease due to the Joule heat. It should be noted that this value is not the damage threshold value. To protect the thermoelectric cooler and maintain stable operation, the supply current should be less than 60% of this maximum current.


^{*20:} Temperature of the cooling side of thermoelectric cooler.


^{*21:} Temperature of the heat radiating side of thermoelectric cooler.

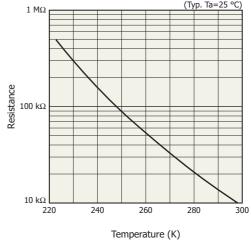
^{*22:} This is a theoretical heat absorption level that offsets the temperature difference in the thermoelectric cooler when the maximum current is supplied to the unit.

S10141-1107S/-1108S/-1109S

KMPDB0179EA

Specifications of built-in temperature sensor

A chip thermistor is built in the same package with a CCD chip, and the CCD chip temperature can be monitored with it. A relation between the thermistor resistance and absolute temperature is expressed by the following equation.


 $RT1 = RT2 \times exp BT1/T2 (1/T1 - 1/T2)$

RT1: resistance at absolute temperature T1 [K] RT2: Resistance at absolute temperature T2 [K]

BT1/T2: B constant [K]

The characteristics of the thermistor used are as follows.

R298=10 kΩ B298/323=3450 K

KMPDB0111EB

S10140/S10141 series

Precautions (Electrostatic countermeasures)

- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- · Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- · Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Element cooling/heating temperature incline rate

When cooling the CCD by an externally attached cooler, set the cooler operation so that the temperature gradient (rate of temperature change) for cooling or allowing the CCD to warm back is less than 5 K/minute.

Related information

■ Precautions

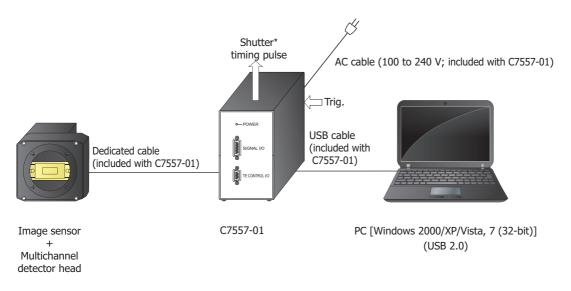
http://jp.hamamatsu.com/sp/ssd/tech_pre_en.html

· Precautions for use (Image sensors)

Multichannel detector heads C10150, C10151

Features

- Designed for back-thinned CCD area image sensor C10150: for non-cooled type (S10140 series) C10151: for TE-cooled type (S10141 series)
- Line binning operation/area scanning operation
- Driver/amplifier circuit for low noise CCD operation
- ➡ Highly stable temperature controller (C10151) Cooling temperature: -10 ± 0.05 °C
- **■** Simple signal input operation
- → Compact configuration


Multichannel detector head controller C7557-01

Features

- For control of multichannel detector head and data acquisition
- Easy control and data acquisition using supplied software via USB interface

Connection example

^{*} Shutter, etc. are not available.

KACCC0402EC

Information described in this material is current as of August, 2012.

Product specifications are subject to change without prior notice due to improvements or other reasons. Before assembly into final products, please contact us for the delivery specification sheet to check the latest information.

Type numbers of products listed in the delivery specification sheets or supplied as samples may have a suffix "(X)" which means preliminary specifications or a suffix "(Z)" which means developmental specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use.

Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

HAMAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218
Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777
North Europe: Hamamatsu Photonics Norden AB: Thorshamnsgatan 35 16440 Kista, Sweden, Telephone: (46) 8-509-031-00, Fax: (46) 8-509-031-01
Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1 int. 6, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-741
China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86) 10-6586-6006, Fax: (86) 10-6586-2866