

Applications

- · Wireless base stations
- Telecommunications equipment
- LAN/WAN
- Data processing
- · Industrial applications

Features

- RoHS lead free solder and lead solder exempted products are available
- Ultra-wide input range: 18 to 60 VDC
- Cost-effective, single board construction
- High efficiency
- Low profile
- Input-to-output isolation: 1500 VDC
- Basic Insulation
- Start-up into high capacitive load
- Low conducted and radiated EMI
- Output overcurrent protection
- Output overvoltage protection
- Input undervoltage lockout
- Overtemperature protection
- Approved to UL 60950-1/ CAN/CSA-C22.2 No. 60950-1, and TUV approved to EN 60950-1, IEC 60950-1

Description

The QMS Series of converters provide a single, isolated step-down voltage (3.3, 5 or 12 VDC nominal) from a wide-input voltage range (18-60 VDC). The QMS is an excellent choice in applications where multiple input voltage options are required. The designer can use a single QMS converter to cover both 24Vin and 48Vin input ranges, eliminating the need to specify multiple circuit packs to handle each input range. This is particularly useful in wireless base station applications where the power plants tend to vary and could provide nominal 24 or 48 V input.

The QMS converters are highly efficient over the entire wide-input voltage range, cost-effective, and offer a low profile, industry-standard quarter-brick footprint. The standard feature set includes remote on/off, remote output voltage sensing, industry-standard output trim, input undervoltage lockout, and overtemperature shutdown with hysteresis.

Model Selection						
Model	Input Voltage VDC	Input Current, Max ADC ¹	Output Voltage VDC	Output Rated Current, I _{RATED} ADC	Output Ripple/Noise, mV _{P-P} ²	Typical Efficiency @ I _{RATED} & 36V _{IN}
QMS25DE	18 - 60	6.0	3.3	25	50	90%
QMS14DG	18 - 60	4.3	5.0	14	50	92%
QMS07DH	18 - 60	5.0	12.0	6.75	120	92%

This product is intended for integration into end-use equipment. All the required procedures for CE marking of end-use equipment should be followed.

Model numbers highlighted in yellow are not recommended for new designs.

¹ @ V_{IN} minimum.

Nominal, (DC to 500 kHz)

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely effect long-term reliability, and cause permanent damage to the converter.

Parameter	Conditions/Description	Min	Max	Units
Input Voltage	Continuous	0	60	VDC
Input Voltage	Transient Withstand (100 ms)		100	VDC
Operating Temperature	Hot Spot Monitor Location ² (Tc)	-40	125	°C
Operating Temperature	Ambient	-40	85	°C
Storage Temperature	Ambient	-40	125	°C
ON/OFF Control Voltage	Referenced to -Vin	-0.7	20	VDC
	QMS25DE		82.5	W
Output Power 1	QMS14DG		70	W
	QMS07DH		81	W

Environmental and Mechanical Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min Nom Max		Units	
Operating Humidity	Relative Humidity, Non-cond.			95	%
Storage Humidity	Relative Humidity, Non-cond.			95	%
Shock	(Half-sinewave, 6 ms), 3 axes	50			g
Sinusoidal Vibration	GR-63-CORE, Section 5.4.2	1			g
Weight			1.2/35		Oz/g
Water Washing	Standard process	Yes			
MTBF (Calculated)	Per Telcordia SR-332 Issue 1, (method 1, case 2, GB, 40°C)	1,750		kHrs	
Dimensions	(Overall)	2.28 (57.9) x 1.45 (36.8)			ln.
Dimensions	(Overall)	x 0.43 (11)			(mm)
Markings & Labeling	Includes P/N, Logo, Date Code, Country of Manufacture				

Isolation Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min Nom Max		Units	
Insulation Safety Rating		Basic			
Isolation Voltage	Input to Output	1500			VDC
Isolation Resistance	Input to Output	10			МΩ
Isolation Capacitance	Input to Output		4700		pF

 $^{^1}$ With appropriate power derating, see Figures 37 – 42. 2 See temperature probe location $T_{\text{C}},$ Figure 36. [Ref.V09 case]

EMI & Safety Regulatory Compliance

Safety Agency	Standard Approved To:	Marking
UL	UL60950-1 / CSA C22.2 No. 60950-1-03	cURus
TUV product service	TUV EN60950-1/A11:2004	TUV PS Baurt mark
CB report	IEC60950-1:2001	N/A
Declaration of Conformity	DIR 73/23/EEC Low Voltage Directive	CE
Conducted Emissions ¹	(with external EMI filter)	CISPR 22 class A

¹ See figures 43, 44, 45.

Input Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
Input Voltage	Continuous	18		60	VDC
Turn-On Input Voltage (UVLO) ¹	Ramping Up	16	17	18	VDC
Turn-Off Input Voltage ¹	Ramping Down	13	15	16.5	VDC
Turn-Off Hysteresis		2			VDC
Input Reflected Ripple Current	@ I _{RATED} , 12μH source inductance BW=20MHz ²		10	72	mA _{P-P}
No-load Input Current	18VDC <u><</u> Vin <u><</u> 60VDCc		90	150	mA
No-load Power Dissipation	Vin = 36VDC			5	W
Disabled Input Current	18VDC <u><</u> Vin <u><</u> 60VDC		25	50	mA
Input Capacitance (internal)				1.4	μF
Minimum Input Capacitance (external)	(ESR <0.7 Ω)	100			μF
Inrush Transient				0.1	A ² s

¹ see Figure 2

² Vin = 36Vin, see Figures 1 and 47

Output Specifications

All specifications apply over specified input voltage, output load, and @ 40 °C ambient temperature, unless otherwise noted.

QMS25DE: 3.3V / 25A

Parameter	Conditions/Description	Min	Nom	Max	Units
Output Voltage (Set-point)	Vin = 36V, Io =25A	3.25	3.30	3.35	VDC
Line Regulation	Vi =18V to 60V, Io =50% Io.max			10	mV
Line Regulation	VI - 18V to 60V, 10 -50% 10.111ax			0.3	%
Load Regulation	Vin =36V, Io.min to Io.max			25	mV
Load Regulation	VIII =30V, 10.11III1 to 10.11lax			0.75	%
Temperature Coefficient	-40 °C ≤ T _{AMB} ≤ +85 °C			0.02	%/°C
Total Error Band	(Line, Load, Temperature,	3.12		3.48	VDC
	Ripple, Life)			+/- 5.5	%
Output Power ¹	w/ proper thermal derating			82.5	W
Output Current ¹	w/ proper thermal derating	0		25	Α
Output Current Limit Threshold	Vin = 36 V, Vo < 90%Vonom	125		150	%lomax
_	Over line and load,		50	100	mV_{P-P}
Output Ripple ²	-40 °C ≤ T _{AMB} ≤ +85 °C		1.5	3.0	%
	(DC to 20 MHz)		17	35	mV _{RMS}
Dynamic Regulation ³ Peak Deviation Settling Time Peak Deviation Settling Time	75-100-75% load step change, to 1% error band, Co=0 μF Slew = 1.0A/μs >>> Slew = 0.1A/μs >>>		+/-165 500 +/-165 500	+/-330 1,000 +/-330 1,000	mV μs mV μs
Efficiency ⁴ (T _{AMB} =40°C)	Vin _{NOM} , I _O = I _{RATED}		90		%
Turn-on Overshoot ⁵	Overall input voltage, load, and temperature conditions		5	10	%Vout
Turn-On Time f (VIN) ⁵	Time from Vin=UVLO to 90% of Vout _{NOM}	2	10	150	ms
Turn-On Time f (On/Off) 6	Time from enable to 90% of Vout _{NOM}		50	250	ms
Rise Time ⁵	From 10 to 90% of Vout _{NOM}		1	2	ms
Admissible Load Capacitance ⁷	I _{rated} , Nom Vin	330		8,220	μF
Switching Frequency			300		kHz

Notes:

see Figures 37 and 40

see Figure 18 for ripple waveform and Figure 46 for measurement method.

see Figures 12 and 15

see Figure 3

see Figure 3

see Figure 6

see Figure 9

⁷ A minimum 330 μF (AVX, TPSD337K006R0045) is recommended for operation over full load, line and temperature range.

Output Specifications (Cont'd)

All specifications apply over specified input voltage, output load, and @ 40 °C ambient temperature, unless otherwise noted.

QMS14DG: 5V / 14A

Parameter	Conditions/Description	Min	Nom	Max	Units
Output Voltage (Set-point)	Vi = 36 V, Io =14 A	4.925	5.0	5.075	VDC
Line Regulation	Vi =18 V to 60 V, lo =50% lo.max			15	mV
Line Regulation	VI = 18 V to 60 V, 10 = 50% 10.111ax			0.3	%
Load Regulation	Vi =36V, Io.min to Io.max			25	mV
Load Regulation	V1 –30V, 10.111111 to 10.111ax			0.5	%
Temperature Coefficient	-40 °C <u><</u> T _{AMB} <u><</u> +85 °C			0.02	%/°C
Total Error Band	(Line, Load, Temperature,	4.76		5.24	VDC
Total Effor Ballu	Ripple, Life)			+/- 4.8	%
Output Power ¹	w/ proper thermal derating			70	W
Output Current ¹	w/ proper thermal derating	0		14	Α
Output Current Limit Threshold	Vin = 36 V, Vo < 90%Vonom	120		160	%lomax
			50	120	mV_{P-P}
0.10.10:01.2	Over line and load, -40 °C < T _{AMB} < +85 °C				
Output Ripple ²	(DC to 20 MHz)		1.0	2.4	%
	(DC to 20 Wi12)		17	42	mVrms
Dynamic Regulation ¹	75-100-75% load step change,				
Peak Deviation	to 1% error band, Co=0 µF		+/-250	+/-500	mV
Settling Time	Slew = 1.0A/μs >>>		500	1,000	μS
Peak Deviation	0.44/ - >>>				
Settling Time	Slew = 0.1A/μs >>>		+/-250 500	+/-500 1,000	mV
Efficiency ⁴ (T _{AMB} =40°C)	Vin _{NOM} , I _O = I _{RATED}		92	1,000	μS %
Turn-on Overshoot ⁵	Overall input voltage, load,		5	10	%Vout
Turn-on Overshoot	and temperature conditions		3	10	/6 V Out
Turn-On Time f (VIN) ⁵	Time from Vin=UVLO to	2	10	150	ms
Tam on time y (tim)	90% of Vout _{NOM}				
Turn-On Time f (On/Off) 6	Time from enable to 90% of Vout _{NOM}		50	250	ms
Rise Time ⁵	From 10 to 90% of Vout _{NOM}		3	6	ms
Admissible Load Capacitance 7	I _{RATED} , Nom Vin	220		4,600	μF
Switching Frequency			330		kHz

Notes:

see Figures 38 and 41

see Figure 19 for ripple waveform and Figure 46 for measurement method.

see Figures 13 and 16

see Figure 4
see Figure 7

see Figure 10

⁷ A minimum 220 μF (AVX, TPSD227K010R0050) is recommended for operation over full load, line and temperature range.

Output Specifications (Cont'd)

All specifications apply over specified input voltage, output load, and @ 40 °C ambient temperature, unless otherwise noted.

QMS07DH: 12V / 6.75A

Parameter	Conditions/Description	Min	Nom	Max	Units
Output Voltage (Set-point)	Vi = 36 V, lo =6.75 A	11.82	12.0	12.18	VDC
Line Degulation	Vi =18V to 60 V to =50% to max			60	mV
Line Regulation	Vi =18V to 60 V, lo =50% lo.max			0.5	%
Load Regulation	Vi =36 V, lo.min to lo.max			60	mV
Load Negulation	V1 = 30 V, 10.111111 to 10.111ax			0.5	%
Temperature Coefficient	-40 °C ≤ T _{AMB} ≤ +85 °C			0.02	%/°C
Total Error Band	(Line, Load, Temperature,	11.44		12.56	VDC
	Ripple, Life)			+/- 4.7	%
Output Power ¹	w/ proper thermal derating			81	W
Output Current ¹	w/ proper thermal derating	0		6.75	Α
Output Current Limit Threshold	Vin = 36 V, Vo < 90%Vonom	130		170	%lomax
2	Over line and load,		120	200	mV_{P-P}
Output Ripple ²	-40 °C ≤ T _{AMB} ≤ +85 °C (DC to 20 MHz)		1.0	1.67	%
	(DC to 20 Wil 12)		42	70	mV_{RMS}
Dynamic Regulation ³ Peak Deviation Settling Time Peak Deviation Settling Time	75-100-75% load step change, to 1% error band, Co=0 μF Slew = 1.0A/μs >>> Slew = 0.1A/μs >>>		+/-600 500 +/-600 500	+/-1,200 1,000 +/-1,200 1,000	mV μs mV μs
Efficiency ⁴ (T _{AMB} =40 °C)	Vin _{NOM} , I _O = I _{RATED}		92		%
Turn-on Overshoot ⁵	Overall input voltage, load, and temperature conditions		5	10	%Vout
Turn-On Time f (VIN) 5	Time from Vin=UVLO to 90% of Vout _{NOM}	2	50	150	ms
Turn-On Time f (On/Off) 6	Time from enable to 90% of Vout _{NOM}		50	250	ms
Rise Time ⁵	From 10 to 90% of Vout _{NOM}		4	8	ms
Admissible Load Capacitance 7	I _{rated} , Nom Vin	68		2,200	μF
Switching Frequency			330		kHz

Notes:

see Figures 39 and 42

see Figure 20 for ripple waveform and Figure 46 for measurement method.

see Figures 14 and 17

see Figure 5
see Figure 8

see Figure 11

⁷ A minimum 68 μF (AVX, TPSD686K020R0070) is recommended for operation over full load, line and temperature range.

Protections Specifications

All specifications apply over specified input voltage, output load, and @ 40 °C ambient temperature, unless otherwise noted.

er	Conditions/Description	Min	Nom	Max	Units
	Non-latching –	auto-recove	ry, hiccup t	уре.	
QMS25DE		31.2		37.5	ADC
QMS14DG	Vin = Vin _{NOM}	16.8		22.4	ADC
QMS07DH	1	8.8		11.5	ADC
QMS25DE			17	30	A _{RMS}
QMS14DG	Hiccup Mode		17	22	A _{RMS}
QMS07DH			12	15	A _{RMS}
2					
	Clamp, non-latching, hiccup me	ode. Indepe	ndent cont	rol loop, au	to-reset.
		115		140	%Vo
ction		•	•	•	
	Non-latching, auto-recovery				
	Temperature node: T _C ³		135		°C
	QMS25DE QMS14DG QMS07DH QMS25DE QMS14DG QMS07DH	Non-latching — QMS25DE QMS14DG QMS07DH QMS25DE QMS14DG QMS07DH 2 Clamp, non-latching, hiccup m	Non-latching - auto-recove QMS25DE	Non-latching – auto-recovery, hiccup to 31.2	Non-latching – auto-recovery, hiccup type. QMS25DE

¹ Refer to Figures 21, 22, 23.

Feature Specifications

All specifications apply over specified input voltage, output load, and @ 40 °C ambient temperature, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
	On/Off ¹				
Negative Logic (-N suffix)	(On/Off signal is low – converter is ON)				
	Converter ON	-0.7		0.8	VDC
On/Off (pin 2)	Sink current			1.0	mADC
(Primary side ref. to -Vin)	Converter OFF	3.5		20	VDC
	Open circuit voltage	7		18	VDC
Positive Logic (-P suffix)	(On/Off signal is low – converter is OFF)				
	Converter ON	3.5		20	VDC
On/Off (pin 2)	Open Circuit Voltage	7		18	VDC
(Primary side ref. to -Vin)	Converter OFF	-0.7		0.8	VDC
	Sink current			1.0	mADC
	Remote Sense				
Remote Sense Headroom				10	%Vo
	Output Voltage Trim ²		•	•	•
Trim Up				10	%Vo
Trim Down		-10			%Vo

¹ See Figure 30.

Refer to Figures 24 – 29

³ Refer to Figure 36.

² The output voltage of the units can be increased to a maximum of 10%. This is comprised of a combination of the remote-sense and trim adjustment. Do not exceed 10% of Vonom between +Vout and –Vout terminals. Also refer to "Output Voltage Adjust" section and Figures 31 – 35 for clarification.)

Performance Characteristic

Reflected Ripple Current

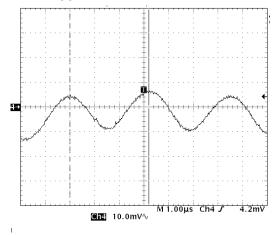


Figure 1. QMS25DE, Input Reflected Ripple Current (typ.)

Conditions: Output current = 25 ADC (82.5 W). Input voltage = 36 VDC. Waveform: Input_{RRC} < 10 mA_{P-P} (measured) Scale : 5mA/10mV or 5mA/division.

Undervoltage Lockout Characteristics (typ)

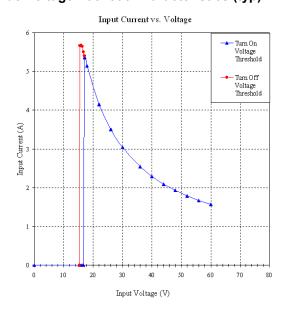


Figure 2. UVLO Input Characteristics

Efficiency

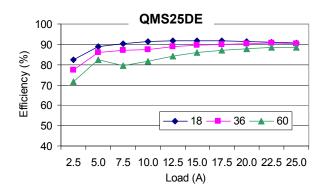


Figure 3. Efficiency, f (Line & load)

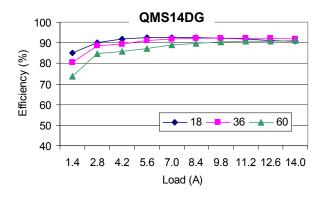


Figure 4. Efficiency, f (Line & load)

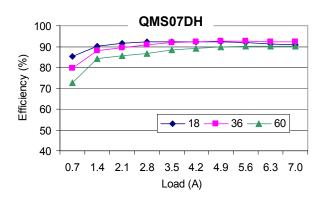


Figure 5. Efficiency, f (Line & load)

Vo Turn-on Characteristics, f (V_{IN})

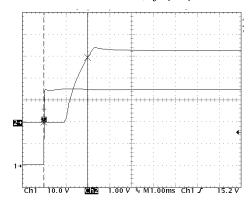


Figure 6. QMS25DE, Turn-On @ Power-up (typ)

Conditions: Vin max., Cext = 0 µF Channel 1 - Input voltage = 36 VDC Channel 2 – Vout, T_{RISE} = 1 ms

Output current: 25 ADC Scale: 10V/div., 1ms/div. Scale: 1V/div.

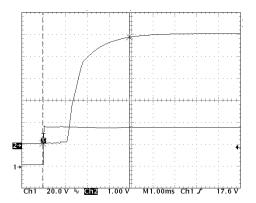


Figure 7. QMS14DG, Turn-On @ Power-up (typ)

Conditions: Vin max., Cext = 0 µF Channel 1 - Input voltage = 36 VDC Channel 2 - Vout, T_{RISE} = 3 ms

Output current: 14 ADC Scale: 20V/div., 1ms/div. Scale: 1V/div.

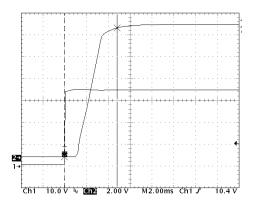


Figure 8. QMS07DH, Turn-On @ Power-up (typ)

Conditions: Vin max., Cext = 0 µF Channel 1 - Input voltage = 36 VDC Channel 2 - Vout, T_{RISE} = 4 ms

Output current: 6.75 ADC Scale: 10V/div., 2ms/div. Scale: 2V/div.

Vo Turn-on Characteristics, f (ON/OFF)

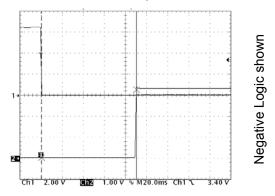


Figure 9. QMS25DE, Turn-On via On/Off Ctrl (typ)

Conditions: Vin = 36 VDC, Cext=0 µF Channel 1 - On/Off signal Channel 2 - Output voltage Time base = 20 ms/div.

Output current: 25 ADC Scale: 2V/div. Amplitude = 1V/div. Delay time = 90ms (typ.)



Figure 10. QMS14DG, Turn-On via On/Off Ctrl (typ)

Channel 1 - On/Off signal Channel 2 - Output voltage Time base = 50 ms/div.

Conditions: Vin = 36 VDC, Cext = 0 µF Output current: 14 ADC Scale: 2V/div. Amplitude = 1V/div. Delay time = 200 ms (typ.)

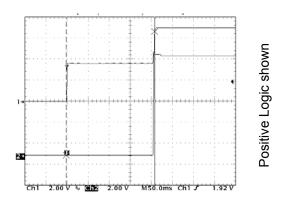


Figure 11. QMS07DH, Turn-On via On/Off Ctrl (typ)

Conditions: Vin = 36 VDC, Cext = 0 µF Output current: 6.75 ADC Channel 1 - On/Off signal Channel 2 - Output voltage Time base = 50 ms/div.

Scale: 2V/div. Amplitude = 2V/div. Delay time = 200 ms (typ.)

Dynamic Load Response

Conditions: Vin = 36 VDC, Cext = 0 μ F Scale : 500 mV/div, 200 μ s/div.

Load: (25% load \triangle) with slew rate: 1.0A/ μ s

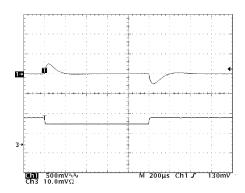


Figure 12. QMS25DE Load Response (typ)

Channel 1- Voltage deviation: \sim 250 mV_P (measured) Channel 3 – Load switched from 18.75 A to 25 A

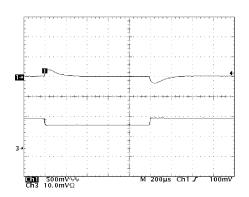


Figure 13. QMS14DG, Load Response (typ)

Channel 1- Voltage deviation: \sim 175 mV_P (measured) Channel 3 - Load switched from 10.5 A to 14 A

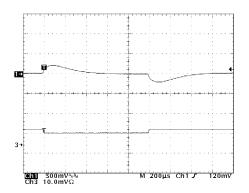


Figure 14. QMS07DH, Load Response (typ)

Channel 1- Voltage deviation: $\sim 225~\text{mV}_P$ (measured) Channel 3 - Load switched from 5.0 A to 6.75 A

Conditions: Vin = 36 VDC, Cext = 0 μ F

Scale: 500 mV/div, 200 µs/div.

Load: (25% load \triangle) with slew rate: 0.1A/ μ s

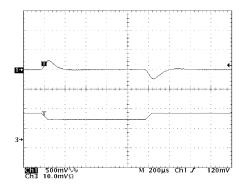


Figure 15. QMS25DE, Load Response (typ)

Channel 1- Voltage deviation: \sim 250 mV $_P$ (measured) Channel 3 - Load switched from 18.75 A to 25 A

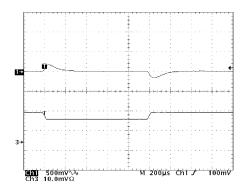


Figure 16. QMS14DG, Load Response (typ)

Channel 1- Voltage deviation: \sim 200 mV $_P$ (measured) Channel 3 - Load switched from 10.5 A to 14 A

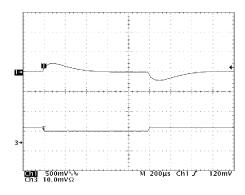


Figure 17. QMS07DH, Load Response (typ)

Channel 1- Voltage deviation: ~ 225 mV $_{\rm P}$ (measured) Channel 3 - Load switched from 5.0 A to 6.75 A

Output Ripple and Noise (Typ, $-40^{\circ}C \le T_{AMB} \le +85^{\circ}C$)

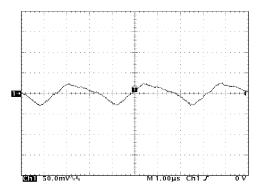


Figure 18. QMS25DE Output Ripple & Noise (typ.)

Conditions: Vin = 60 V and lout = 25 A. Channel 1 - Vo, (AC coupled), ~50 mV_{P-P} (measured)

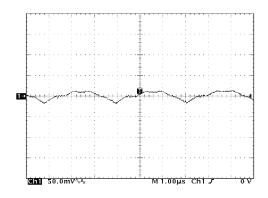


Figure 19. QMS14 Output Ripple & Noise (typ.)

Conditions: Vin = 60 V and lout = 14 A. Channel 1 - Vo, (AC coupled), ~35 mV_{P-P} (measured)

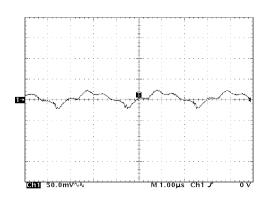
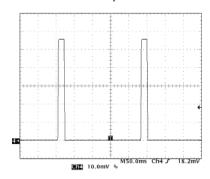
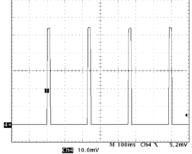



Figure 20. QMS07 Output Ripple & Noise (typ.)

Conditions: Vin = 60 V and lout = 6.75 A. Channel 1 - Vo, (AC coupled), \sim 50 mV_{P-P} (measured)

Overcurrent Protection


When the output is loaded above the maximum output current rating, the voltage of the converter will reduce to maintain the output power at a safe level. In the case of a high overload or short circuit condition where the output voltage is pulled below 50% of Vo-nom, the unit will enter into a "Hiccup" mode of operation. Under this condition, the converter will attempt to restart, typically every 250 ms, until the overload has cleared. Because of very low duty cycle, the RMS value of output current is kept low. Once the output current is reduced to within its rated range, the converter automatically exits the hiccup mode and continues normal operation.

QMS25DE

Condition: Vin=60VDC $I_{SC} < 30 \ A_{RMS}$ Scale: 10 Amp/div.

Figure 21, Short Circuit Behavior (typ.)

QMS14DG

Condition: Vin=60VDC I_{SC} < 22 A_{RMS} Scale: 10 Amp/div.

Figure 22, Short Circuit Behavior (typ.)

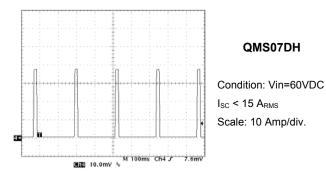


Figure 23, Short Circuit Behavior (typ.)

Pre-bias Conditions

The QMS converters will start-up into a pre-bias voltage of 50% Vo_{NOM} without damage.

Overvoltage Protection

The output overvoltage protection consists of a separate control loop, independent of the primary control loop. This secondary control loop has a higher voltage set point than the primary loop. In a fault condition, the converter enters a "Hiccup" mode of operation, and ensures that the output voltage does not exceed V_{ovp} max.

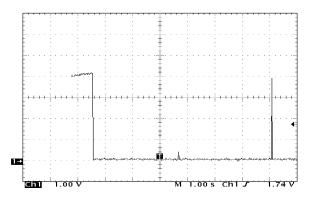
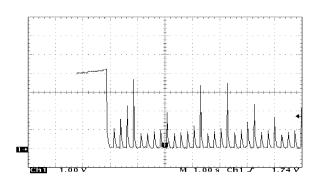



Figure 24. QMS25DE, Induced OVP Behavior (typ.)

Conditions: Vin = 36 V, Channel 1- Vo, lout = 75% load. Scale: 1 V/div., 1 sec.div.

QMS25, min load, 36 Vin

Figure 25. QMS25DE, Induced OVP Behavior (typ.)

Conditions: Vin = 36 V, Channel 1- Vo, lout = minimum load. Scale: 1 V/div., 1 sec.div.

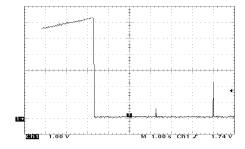


Figure 26. QMS14DG, Induced OVP Behavior (typ.)

Conditions: Vin = 36 V, Channel 1- Vo, lout = 75% load. Scale: 1 V/div., 1 sec.div.

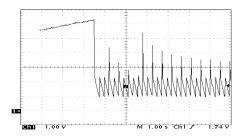


Figure 27. QMS14DG, Induced OVP Behavior (typ.)

Conditions: Vin = 36V, Channel 1- Vo, lout = minimum load. Scale: 1 V/div., 1 sec.div.

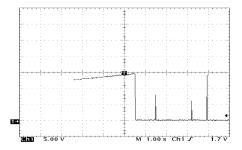


Figure 28. QMS07DH, Induced OVP Behavior (typ.)

Conditions: Vin = 36 V, Channel 1- Vo, lout = 75% load. Scale: 1 V/div., 1 sec.div.

Figure 29. QMS07DH, Induced OVP Behavior (typ.)

Conditions: Vin = 36 V, Channel 1- Vo, lout = minimum load. Scale: 1 V/div., 1 sec.div.

Typical Application

Input and Output Impedance

The QMS-Series has been designed for stability without external capacitance when used in low inductance input and output circuits. In many applications, the inductance associated with the distribution of the power source to the input of the power converter can negatively affect a converter's stability. The addition of a 33 μF electrolytic capacitor with an ESR \leq 100 m Ω , across the input helps to ensure stability of the converter. This capacitor should be of suitably high quality and rated for effective use at low temperatures as needed.

Refer to the "Inrush Current Control Application Note" on www.power-one.com for suggestions on how to limit the magnitude of the inrush current.

Additionally, see the EMC section further below in this datasheet for discussion for other external component which may be required for reduction of conducted emissions.

The QMS can support high amounts of output capacitance. Refer to "*Output Specification*" tables for details.

Inrush Current

Refer to the "Inrush Current Control Application Note": (http://www.power-one.com/technical/articles/dc-dc 1-app.pdf) for suggestions on how to limit the magnitude of the inrush current.

Features Description

ON/OFF Control

(-x) "no suffix" model

With the **positive logic** model, when the ON/OFF pin is pulled low, the output is turned off and the unit draws less than 25 mA of input current. If the ON/OFF pin is not used, it can be left floating.

(-N) suffix model

With **negative logic**, when the ON/OFF pin is pulled low, the unit is turned on. If the ON/OFF pin is not used, it can be connected to the -Vin pin.

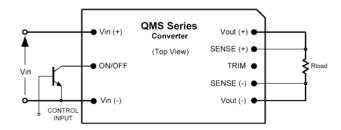


Figure 30. On/Off Control

(Common to -x & -N models)

The ON/OFF pin in the QMS converter functions as a normal soft shutdown. The ON/OFF pin is pulled up internally, so no external voltage source is required or recommended. The user should avoid connecting a resistor between the ON/OFF pin and the +Vin pin. The ON/OFF pin is internally referenced to the –Vin pin. An open collector switch is recommended to control the voltage between these two points.

The controlling signal must not be referenced ahead of EMI filtering, or remotely from the unit. Optical coupling the control signal and locating the opto-coupler directly at the converter, is recommended for trouble-free operation.

Output Voltage Adjustment (Trim)

The industry-standard trim feature allows the user to adjust the output voltage from its nominal value. This can be used to accommodate production margin testing.

Output voltage adjustment is accomplished by connecting an external resistor between the **Trim** pin and to either the $+V_{OUT}$ or $-V_{OUT}$ pins. That below defines the two versions as well as trim equations used to determine a trim resistor value for a certain trim voltage.

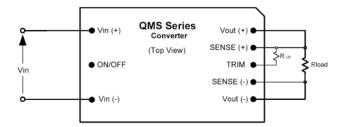


Figure 31. QMS Trim Schematic

With an external resistor (R_{UP}) connected between the **Trim** pin and $+V_{OUT}$ pin, the output voltage set-point (Vo) increases. The following equation determines the required external resistor value to obtain an adjusted output voltage:

$$R_{UP} = \left(\frac{5.11 \cdot Vout \cdot (100 + \Delta V\%)}{1.225 \Delta V\%} - \frac{511}{\Delta V\%} - 10.22\right) \cdot \text{K}\Omega$$

Where Δ % is the percentage change from Vo_{NOM}.

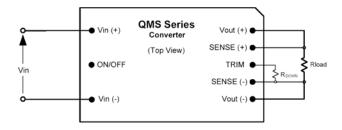


Figure 32. QMS Trim Schematic

With an external resistor (R_{DOWN}) between the **Trim** pin and $-V_{OUT}$ pin the output voltage set-point (Vo) decreases. The following equation determines the required external resistor value to obtain an adjusted output voltage:

$$R_{DOWN} = \left(\frac{511}{\Delta Vo \%} - 10.22\right) \cdot K\Omega$$

QMS25DE Trim Values:

,	Vo Increas	se	Vo Decrease		
ΔVο%	R _{-UP} (KΩ)	New Vo (V _{DC})	ΔVο%	R _{-DOWN} (KΩ)	New Vo (V _{DC})
1	869	3.33	1	501	3.27
2	436	3.37	2	245	3.23
3	292	3.40	3	160	3.20
4	220	3.43	4	118	3.17
5	177	3.47	5	92	3.14
6	148	3.50	6	75	3.10
7	127	3.53	7	63	3.07
8	112	3.56	8	54	3.04
9	100	3.60	9	47	3.00
10	90	3.63	10	41	2.97

Figure 33. QMS25DE Trim Characteristics

QMS14DG Trim Values

Vo Increase			Vo Decrease			
ΔVο%	R _{-UP} (KΩ)	New Vo (V _{DC})	ΔVο%	R _{-DOWN} (KΩ)	New Vo (V _{DC})	
1	1585	5.05	1	501	4.95	
2	798	5.10	2	245	4.90	
3	536	5.15	3	160	4.85	
4	404	5.20	4	118	4.80	
5	326	5.25	5	92	4.75	
6	273	5.30	6	75	4.70	
7	236	5.35	7	63	4.65	
8	207	5.40	8	54	4.60	
9	186	5.45	9	47	4.55	
10	168	5.50	10	41	4.50	

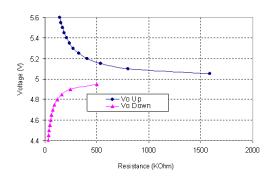


Figure 34. QMS14DG Trim Characteristics

QMS07DH Trim Values

Vo Increase			Vo Decrease			
ΔVo%	R _{-UP} (KΩ)	New Vo (V _{DC})	ΔVo%	R _{-DOWN} (KΩ)	New Vo (V _{DC})	
1	4535	12.12	1	501	11.88	
2	2287	12.24	2	245	11.76	
3	1538	12.36	3	160	11.64	
4	1164	12.48	4	118	11.52	
5	939	12.60	5	92	11.40	
6	789	12.72	6	75	11.28	
7	682	12.84	7	63	11.16	
8	602	12.96	8	54	11.04	
9	539	13.08	9	47	10.92	
10	489	13.20	10	41	10.80	

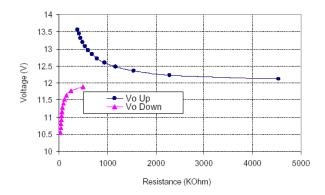


Figure 35. QMS07DH Trim Characteristics

Notes:

- When the output voltage is trimmed up, the output power from the converter must not exceed its maximum rating. The power is determined by measuring the output voltage on the output pins, and multiplying it by the output current.
- In order to avoid creating apparent load regulation degradation, it is important that the trim resistors be connected directly to the remote sense pins, and not to the load or to traces going to the load.
- The output voltage increase can be accomplished either by the trim or by the remote sense or by the combination of both. In any case, the absolute maximum output voltage increase shall not exceed the limits defined in the *Features Specification* section above.
- 4. Either Rup or Rdown should be used to adjust the output voltage according to the equations above. If both Rup and Rdown are used simultaneously, they will form a resistive divider and the equations above will not apply.

Thermal Considerations

QMS converters are designed for both natural and forced convection cooling. To achieve long term reliability, the recommended power derating curves below, were established by comparing measured junction and hot spot temperatures against those allowed per Power-One's component derating guidelines

The graphs in Figures 37 thru 42 show the maximum recommended output current of each QMS converter at various ambient temperatures under both natural and forced convection cooling (longitudinal airflow direction, from pin 1 to pin 3). Vin for both 24 VDC and 48 VDC conditions are shown.

Thermal Measurements

Measurements requiring airflow were made in Power-One's vertical wind tunnel equipment using both Infrared (IR) thermography as well as the traditional thermocouple method. The converter was soldered to a test board consisting of a 0.060" thick printed wiring board (PWB) with four layers. The top and bottom layers were not metalized. The two inner layers, comprised of two-ounce copper, were used to provide traces for connectivity to the converter. The lack of metalization on the outer layers as well as the limited thermal connection ensured that heat transfer from the converter to the PWB was minimized. This provides a worst-case but consistent scenario for thermal derating purposes.

With the converter installed into the host application, customer verification that all components are at or below their safe operating temperatures may be performed similarly. However, for a more simplified testing method, monitoring the converter's designated thermal reference point ($T_{\rm C}$) will yield effective results.

The recommended location of the measuring thermocouple is shown below. This reference point should be maintained at \leq 125 $^{\circ}$ C.

It is recommended to use a 32AWG to 40AWG thermocouple wire probe on the location identified below; labeled $\mathbf{T}_{\mathbf{C}}$

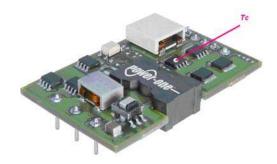


Figure 36. Thermal Reference, T_C. (QMS25DE shown)

Power Derating f (V_{IN}, T_A, Airflow)

Direction of airflow: from -V_{IN} (Pin 1) to +V_{IN} (Pin 3)

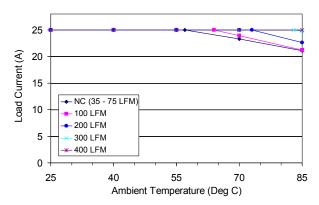


Figure 37. QMS25DE, Vin = 24 VDC

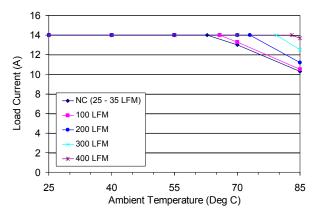


Figure 38. QMS14DG, Vin = 24 VDC

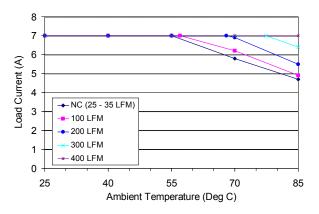


Figure 39. QMS07DH, Vin = 24 VDC

Figure 40. QMS25DE, Vin = 48 VDC

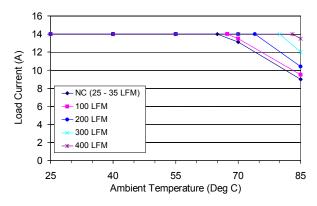


Figure 41. QMS14DG, Vin = 48 VDC

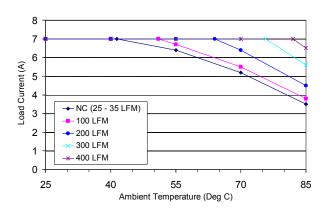


Figure 42. QMS07DH, Vin = 48 VDC

Safety Considerations

The QMS converters feature 1500 VDC isolation from the input-to-output. The input-to-output resistance is greater than 10 $M\Omega.$ These converters are provided with Basic insulation between input and output circuits according to all IEC60950 based standards. Nevertheless, if the system using the converter needs to receive safety agency approval, certain rules must be followed in the design of the system. In particular, all of the creepage and clearance requirements of the end-use safety requirements must be observed. These documents include UL60950 - CSA60950-00 and EN60950, although other or additional requirements may be needed for specific applications.

The QMS converter has no internal fuse. The external fuse must be provided to protect the system from catastrophic failure. Refer to the "Input Fuse Selection for DC/DC converters" application note on www.powerone.com for proper selection of the input fuse. Both input traces and the chassis ground trace (if applicable) must be capable of conducting a current of 1.5 times the value of the fuse without opening. The fuse must not be placed in the grounded input line, if any.

In order for the output of the QMS converter to be considered as SELV (Safety Extra Low Voltage) or TNV-1, according to all IEC60950 based standards, one of the following requirements must be met in the system design:

- If the voltage source feeding the module is SELV or TNV-2, the output of the converter may be grounded or ungrounded.
- If the voltage source feeding the module is ELV, the output of the converter may be considered SELV only if the output is grounded per the requirements of the standard.
- If the voltage source feeding the module is a Hazardous Voltage Secondary Circuit, the voltage source feeding the module must be provided with at least Basic insulation between the source to the converter and any hazardous voltages. The entire system, including the QMS converter, must pass a dielectric withstand test for Reinforced insulation. Design of this type of system requires expert engineering and understanding of the overall safety requirements and should be performed by qualified personnel.

Note: This information is provided for guidance only and the user is responsible for any design considerations regarding safety.

Conducted EMI

The following conducted EMI filter configuration and component values are offered as a guideline to assist in designing an effective filter solution in the actual application. Many factors can affect overall EMI performance; such as layout, wire routing and load characteristics, among others. As a result, the final circuit configuration and component values may require adjustment.

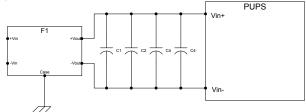


Figure 43. EMI Filter Configuration

Ref. Des	Description	Manufacturer
C1, C2	1 μF @100V MLC	AVX or Equivalent
C3, C4	100 μF @ 100V Alum. Electrolytic	Panasonic NGH Series or Equiv.
F1	FC100V10A Input Filter Module	Power-One

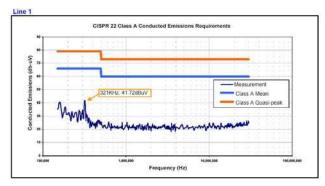


Figure 44. Conducted EMI Scan of the QMS25DE

(w/ Input Filter Components Designated in Table Above.)

Test conditions: Vin = 36 VDC, lo = 100% rated (82.5 W)
Test Specification: (CISPR-22) NE55022 Class A (Peak Detect)

Conducted EMI, con't

Alternate - Minimum Margin Filter Design

Ref. Des	Description	Manufacturer
C1 – C4	Not Used	N/A
F1	FC100V10A Input Filter Module	Power-One

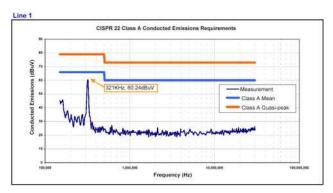


Figure 45. Conducted EMI Scan of the QMS25DE

(w/ Input Filter Components Designated in Table Above.)

Test conditions: Vin = 36 VDC, lo = 100% rated (82.5 W)
Test Specification: (CISPR-22) NE55022 Class A (Peak Detect)

Other Measurement Methods

To improve the accuracy and repeatability of ripple and noise measurements, Power-One utilizes the test setups shown in Figure 46 & 47 below.

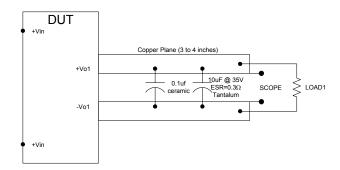


Figure 46. Output Ripple and Noise Set-up.

A BNC connector is used for measurements to eliminate noise pickup associated with long ground leads of conventional scope probes. The load is located 3" to 4" away from the converter.

For output decoupling, we recommend using a $10\mu F$ low ESR tantalum (AVX TPSC106M025R0500 is used in Power-One test setup) and a 0.1 μF ceramic capacitor. Note that the capacitors do not substitute for filtering required by the load.

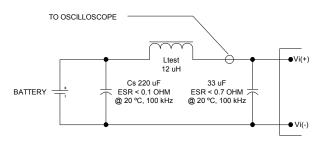
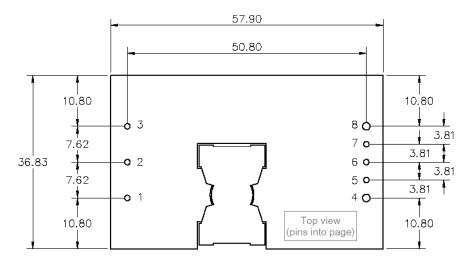
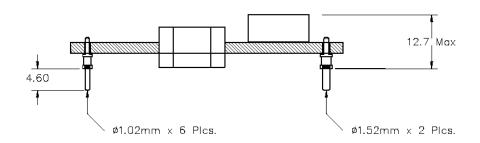




Figure 47. Input Reflected Ripple Current Set-up.

Note: Measure input reflected-ripple current with a simulated inductance (Ltest) of 12 μ H. Capacitor C_{S} offsets possible battery impedance. Measure current as shown above.

Mechanical Drawing

Mechanical Tolerances & Finishes:					
	Millimeters	Inches			
General Dimensions	$X.X = \pm 0.5$	$X.XX = \pm 0.020$			
	X.XX ±0.25	$X.XXX = \pm 0.010$			
Distance from tallest					
converter component to	0.25 _{MIN}	0.010 _{MIN}			
host board					
Pins					
Diameter	±0.05	±0.002			
Length					
4.6mm [0.180"] (suffix -n/a)	±0.5	±.020			
3.68mm [0.145"] (suffix -7)	±0.5	±.020			
2.79mm [0.110"] (suffix -8)	±0.5	±.020			
	Location	Dimension			
Pin Shoulder	Pins 1-3 & 5-7	1.80mm dia.			
	Pins 4 & 8	2.1mm dia			
Material & Finish	Copper with Tin/Lead over Nickel				

Pin Assignments	Function
1	-Vin
2	On/Off
3	+Vin
4	-Vout
5	-Sense
6	Trim
7	+Sense
8	+Vout

QMS DC-DC Series Data Sheet Wide-Range Input, 70 to 82W Quarter-Brick Converters

Ordering Information

Example: QMS at 12 V with negative logic, and 3.68mm [0.145"] length pins = QMS07DH-N7

		. Vin				OPTIONS (Suffixes)	
Series	# Outputs	lo	Range	Vout	-	On/Off Logic	Pin Length
QM	S	25	D	E, G, H	-	none, N	none, 7, 8
Series Name [Q = 1/4-Brick]	S = Single output	A _{DC}	18 to 60V _{DC}	E = 3.3 G = 5.0 H = 12.0	-	None = Pos. N = Neg.	None (Standard) = 4.6mm [0.18"] 7 = 3.68mm [0.145"] 8 = 2.79mm [0.110"]

RoHS Ordering Information

Options	Suffixes to Add to Part Number		
RoHS lead solder exemption	No RoHS character required.		
RoHS compliant for all 6 substances	Add "G" as the last character of the part number.		

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.