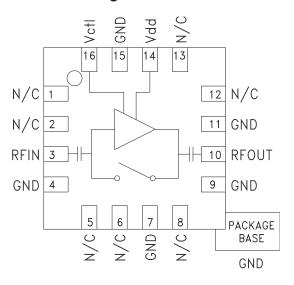


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz



Typical Applications

The HMC605LP3 / HMC605LP3E is ideal for:

- · Wireless Infrastructure
- · Customer Premise Equipment
- Fixed Wireless
- WiMAX & WiBro
- Tower Mounted Amplifiers

Functional Diagram

Features

Noise Figure: 1.1 dB Output IP3: +31 dBm

Gain: 20 dB

Low Loss & Failsafe Bypass Path

Single Supply: +3V or +5V

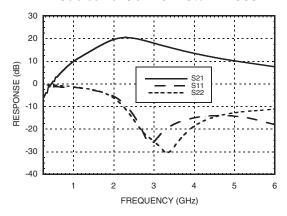
50 Ohm Matched Input / Output

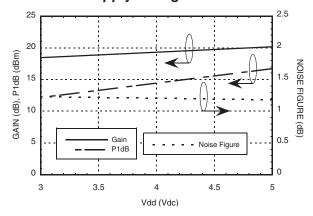
General Description

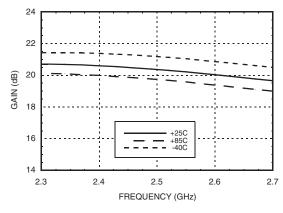
The HMC605LP3 / HMC605LP3E are versatile, high dynamic range GaAs MMIC Low Noise Amplifiers that integrate a low loss LNA bypass path on the IC. The amplifier is ideal for WiBro & WiMAX receivers operating between 2.3 and 2.7 GHz and provides 1.1 dB noise figure, 20 dB of gain and +31 dBm output IP3 from a single supply of +5V @ 74 mA. Input and output return losses are 14 and 15 dB respectively with no external matching components required. A single control line (Vctl) is used to switch between LNA mode and a low 2 dB loss bypass mode and reduces the current consumption to 10 μ A. The HMC605LP3 is failsafe and will default to the bypass mode with no DC power applied.

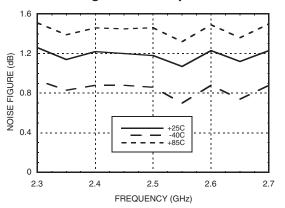
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +5V

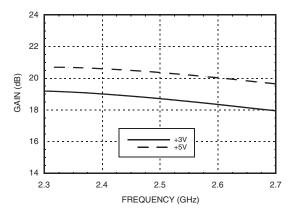
Parameter		LNA Mode		Bypass Mode		11.7		
		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		2.3 - 2.7		2.3 - 2.7		GHz		
Gain		17.5	20.5		-3.0	-2.0		dB
Gain Variation Over Temperature			0.012			0.002		dB/°C
Noise Figure			1.1	1.3				dB
Input Return Loss			14			13		dB
Output Return Loss			15			13		dB
Reverse Isolation			33					dB
Output Power for 1dB Compression (P1dB)*			17			16		dBm
Output Third Order Intercept (IP3)* (-20 dBm Input Power per tone, 1 MHz tone spacing)			31					dBm
Supply Current (Idd)			74	90		0.01		mA
Custishing Coast	LNA Mode to Bypass Mode		-			6.0		ns
Swtiching Speed	Bypass Mode to LNA Mode		60			-		ns

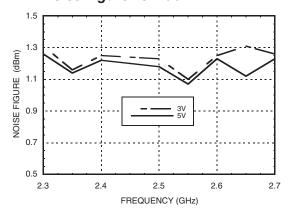

^{*} P1dB for LNA Mode is referenced to RFOUT while P1dB for Bypass Mode is referenced to RFIN.


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz


LNA Broadband Gain & Return Loss

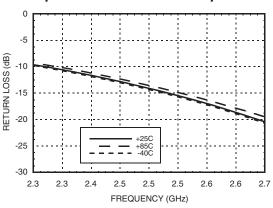

LNA – Gain, Noise Figure & Power vs. Supply Voltage @ 2.5 GHz


LNA Gain vs. Temperature

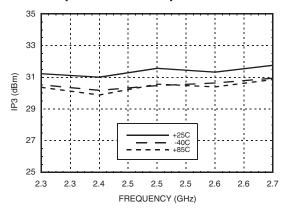

LNA Noise Figure vs. Temperature

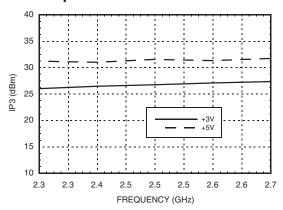
LNA Gain vs. Vdd

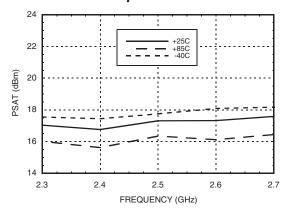
LNA Noise Figure vs. Vdd

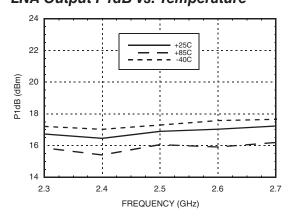


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz


LNA Input Return Loss vs. Temperature

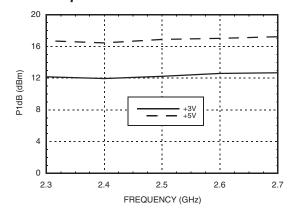

LNA Output Return Loss vs. Temperature

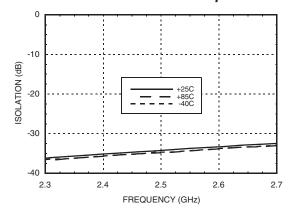

LNA Output IP3 vs. Temperature


LNA Output IP3 vs. Vdd

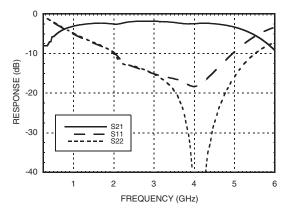
LNA Psat vs. Temperature

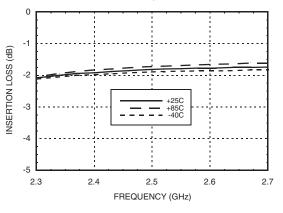
LNA Output P1dB vs. Temperature

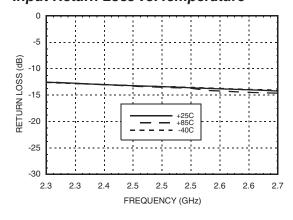


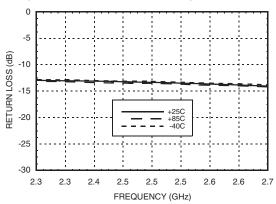


GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz


LNA Output P1dB vs. Vdd


LNA Reverse Isolation vs. Temperature


Bypass Mode Broadband Insertion Loss & Return Loss


Bypass Mode Insertion Loss vs. Temperature

Bypass Mode Input Return Loss vs. Temperature

Bypass Mode Output Return Loss vs. Temperature

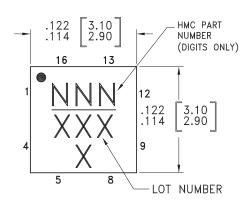
GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz

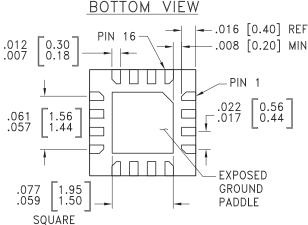
Absolute Maximum Ratings

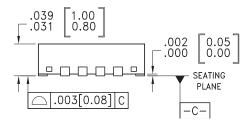
Drain Bias Voltage (Vdd)	+8 Vdc
RF Input Power (RFIN) LNA Mode (Vdd = +5.0 Vdc) Bypass Mode	+15 dBm +30 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 13.7 mW/°C above 85 °C)	890 mW
Thermal Resistance (channel to ground paddle)	73 °C/W
Storage Temperature	-65 to +150° C
Operating Temperature	-40 to +85° C

Typical Supply Current vs. Vdd

Vdd (Vdc)	ldd (mA)
+5	74
+3	28


Truth Table


LNA Mode	Vctl = Vdd ±0.3V
Bypass Mode	Vctl= 0V ±0.3V



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

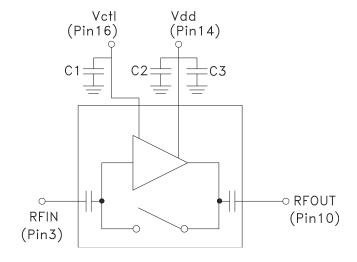
NOTES

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC605LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	605 XXXX	
HMC605LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	605 XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

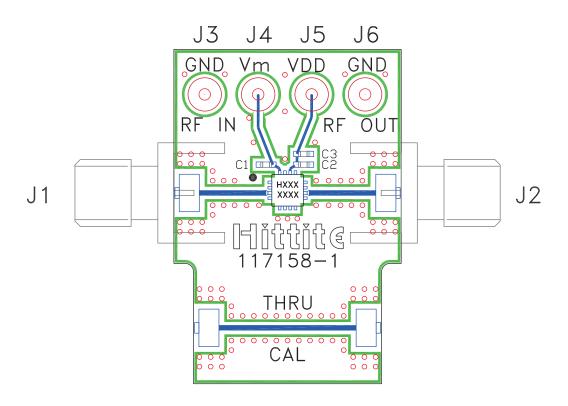


Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 2, 5, 6, 8, 12, 13	N/C	No connection necessary. These pins may be connected to RF/DC ground.		
3	RFIN	This pin is AC coupled and matched to 50 Ohms. See application circuit. RFIN O		
4, 7, 9, 11, 15	GND	These pins must be connected to RF/DC ground.		
10	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT	
14	Vdd	Power supply voltage. Bypass capacitors are required. See application circuit.	Vdd	
16	Vctl	Mode Control Voltage. See truth table.	Vetlo	

Application Circuit

Components	Value
C1, C2	100pF
C3	10KpF



GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117160 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J6	DC Pin	
C1, C2	100 pF Capacitor, 0402 Pkg.	
C3	10 KpF Capacitor, 0402 Pkg.	
U1	HMC605LP3 / HMC605LP3E Amplifier	
PCB [2]	117158 Evaluation Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ROHS V

GaAs PHEMT MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 2.3 - 2.7 GHz

Notes: