

Orange PI User Manual

<Version: V1.0 >

What's Orange Pi?

It's an open-source single-board computer. It can run Android 4.4, Ubuntu, Debian, Rasberry Pi Image, Cubieboard Image, as well as the banana pi Image. It uses the AllWinner A20 SoC, and has 1GB DDR3 SDRAM

What can I do with Orange Pi?

Build		

A computer

A wireless server

Games

Music and sounds

HD video

A speaker


Android

Scratch

Pretty much anything else, because Orange Pi is open source

Who's it for?

Orange Pi is for anyone who wants to start creating with technology – not just consuming it. It's a simple, fun, useful tool that you can use to start taking control of the world around you.

Hardware specification

CPU	ARM® Cortex™-A7 Dual-Core
GPU	ARM® Mali400MP2, Complies with OpenGL ES 2.0/1.1
Memory (SDRAM)	1GB DDR3 RAM run 960MHZ
Onboard Storage	up to 64GB on TF slot, up to 2T on 2.5 SATA disk (The default is no Nand Flash)
Onboard Network	10/100/1000 ethernet(Realtek RTL8211E), wifi 802.11 b/g/n(RTL8188ETV)
Video Input	A CSI input connector Camera
Audio Input	MIC, LINEIN, FMIN
Video Outputs	CVBS and HDMI ,RGB/LVDS,VGA
Audio Output	3.5 mm jack, PHOUT
Power Source	USB OTG input, DC input
USB 2.0 Ports	Four USB 2.0 HOST, one USB 2.0 OTG
Buttons	Power button: Next to Reset button
	UBoot button (optional): Behind HDMI connector
Low-level peripherals	eight GPIO, four UART, three I ² C bus, SPI bus with two chip selects,
	CAN bus, six ADC, two PWM,+3.3 V, +5 V, ground
GPIO(2x9) pin	GPIO,UART, ADC,RESET ,+3.3v,+5v,ground.
LED	Power Status LED (Red)
	Ethernet Status LED (Blue)
	User Define LED (Green)

Key	IR input, UBOOT, POWER
Supported OS	Android Android 4.4 Debian Ubuntu Raspbian
Supported Apps	Scratch

Interface definition

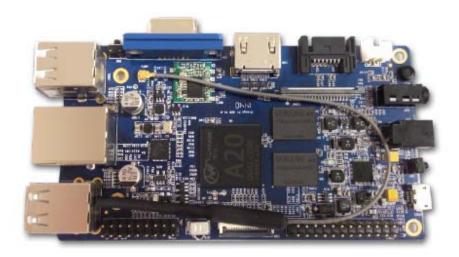
Product size	112 mm × 60mm
Weight	60g
Package	range pi

Grange pi

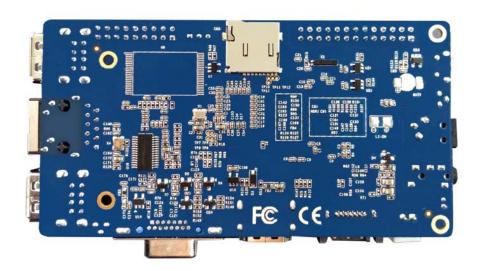
Android is a trademark of Google Inc.

Debian trademark is a registered United States trademark of Software in the Public Interest, Inc.

Ubuntu is a registered trademarks of Canonical Ltd.


Raspberry Pi is a registered trademark of the Raspberry Pi Foundation.

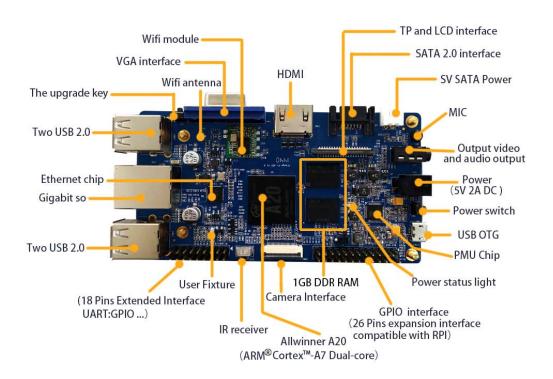
Orange Pi™ is a trademark of the Shenzhen Xunlong Software CO., Limited

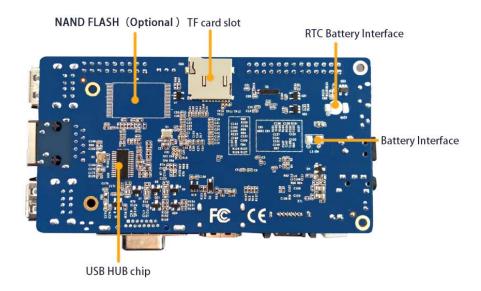


Hardware

Top view:

Bottom view:




Interface:

Top view

Bottom view

Use method

By following this short quick start guide, you can use your Orange Pi in just a few

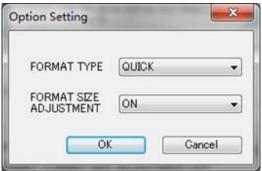
minutes. There are three steps to boot your Orange Pi.

Step 1: Get what you need

To enjoy the use of your Orange Pi, you will need at least the accessories in the table below.

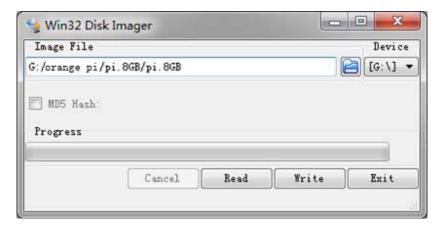
No.	Item	Minimum recommended specification & notes
1	TF card	 Minimum size 4Gb; class 4 (the class indicates how fast the card is). We recommend using branded TF cards as they are more reliable.
2a	HDMI(Full sized) to HDMI / DVI lead	HDMI to HDMI lead (for HD TVs and monitors with HDMI input). OR HDMI to DVI lead (for monitors with DVI input).
2b	AV video lead	 A standard AV video lead to connect to your analogue display if you are not using the HDMI output.
3	Keyboard and mouse	 Any standard USB keyboard and mouse should work. Keyboards or mice that take a lot of power from the USB ports, however, may need a powered USB hub. This may include some wireless devices.
4	Ethernet cable/USB WiFi(Optional)	 Networking is optional, although it makes updating and getting new software for your Orange Pi much easier.
5	DC power adapter	 A good quality, DC power supply that can provide at least 2.0A at 5V is essential. Most of the micro USB through the PC to supply Power cann't be used, because the moment of starting current of about 1.5A.
6	Audio lead (Optional)	 You can choose a 3.5mm jack audio led to connect to audio port to get stereo audio.
7	Mobile Hard disk (Optional)	You can choose to connect a mobile hard disk to SATA port to store more files.

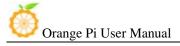
Step2: Prepare your TF card for the Orange Pi


In order to enjoy your Orange Pi, you will need to install an Operating System (OS) onto an TF card. Instructions below will teach you how to write an OS image to your TF card under Windows and Linux.

Windows:

- 1. Insert your TF card into your computer. The size of TF should be larger than the OS image size, generally 4GB or greater.
- 2. Format the TF card.
 - i. Download the a TF card format tool such as **TF Formatter** from https://www.sdcard.org/downloads/formatter_4/eula_windows/.
 - ii. Unzip the download file and run the setup.exe to install the tool on your machine.
 - iii. In the "Options" menu, set "FORMAT TYPE" option to QUICK, "FORMAT SIZE ADJUSTMENT" option to "ON".




- iv. Check that the TF card you inserted matches the one selected by the tool.
- v. Click the "Format" button.
- 3. Download the OS image from the Downloads webpage.
 - i. Website: http://www.orangepi.org/downloaded/download.html
- 4. Unzip the download file to get the OS image (exclude android os image, android os image need other burn mode.).
 - i. Right click on the file and choose "Extract all".
- 5. Write the image file to the TF card.
 - i. Download a tool that can wirte image to TF card, such as Win32 Diskimager from:

http://sourceforge.net/projects/win32diskimager/files/Archive/

ii. Open the unzipped image file.

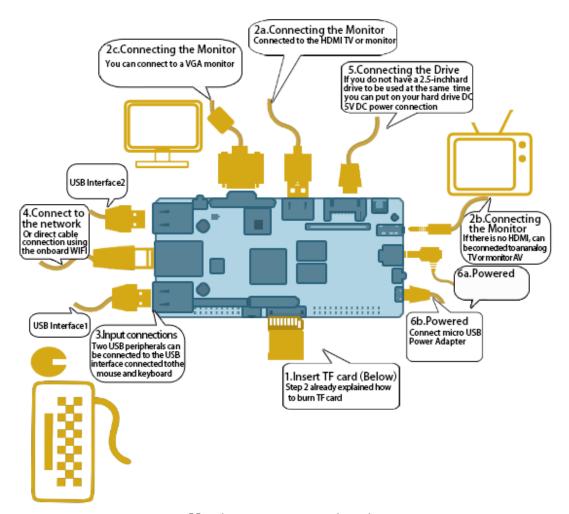
iii. Click Write button. Wait patiently to successfully complete writing.

Linux:

- 1. Insert your TF card into your computer. The size of TF should be larger than the OS image size, generally 4GB or greater.
- 2. Format the TF card.
 - i. Run *fdisk -l /dev/sdx* command to check the TF card node.
 - ii. Run *umount /dev/sdxx* to unmount all the partitions of the TF card.
 - iii. Run *sudo fdisk /dev/sdx* command to configure TF card. Use *o* command to delete all partition of TF card and use *n* command to add one new partition. Use *w* command to save change.
 - iv. Run *sudo mkfs.vfat /dev/sdx1* command to format the new created partition of TF card as FAT32.

(x should be replaced according to your TF card node) You can also jump this step under Linux, because write image command *dd* under Linux will format the TF card automatically.

- 3. Download the OS image from the Downloads webpage.
 - i. Website: http://www.orangepi.org/downloaded/download.html
- 4. Unzip the download file to get the OS image (exclude android os image, android os image need other burn mode.).
 - i. Run *unzip [downloaded filename]* command.
- 5. Write the image file to the TF card.
 - i. Run fdisk -1/dev/sdx command to check the TF card node.
 - ii. Verify if the hash key of the zip file is the same as shown on the downloads page (optional).


sha1sum [path]/[imagename]

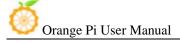
This will print out a long hex number which should match the "SHA-1" line for the TF image you have downloaded


- iii. Run umount /dev/sdxx to unmount all the partition of the the TF card
- iv. Run **sudo dd bs=4M if=[path]/[imagename] of=/dev/sdx** command to write image file to TF card. Wait patiently to successfully complete writing. Please note that block size set to 4M will work most of the time, if not, please try 1M, although 1M will take considerably longer. You can use **sudo pkill –USR1 –n –x dd** command to check progress

Step3: Set up your Orange Pi

According to the set up diagram below, you can easily set up your Orange Pi.

Hardware connect sketch map



Hardware connect physical map-top view

Hardware connect physical map-bottom view

- 1. Insert the written-image TF card into the TF card slot on the bottom edge of the underside of the board.
- 2. On the top edge in the middle of the board is the HDMI Type A (Full sized) port, just on the left of the SATA port. Just connect any HDMI Type A cable from the board to your TV or HDMI Monitor.
 - If you don't have a TV/Monitor with a HDMI or DVI-D port you can use the VGA just on the left of the HDMI or use the AV jack located on the right edge topside.
- 3. Plug a USB keyboard and mouse into the USB slots located on the left edge.
- 4. Just between the four USB ports on the left edge is the ethernet connector for anyone who wants to plug the Orange Pi into a wired network. You can also use wifi to connect network.
- 5. Finally, on the right edge, under the AV jack is the DC power connector. Plug in a regulated power supply that is rated at 5V ± 5% and at least 1500mA (or 2.0A). Any number bigger than 1500 mA will also work. On the right edge, under the power switch is the micro-usb power connector. Avoid using the smaller chargers used for small GSM phones, as these are often unregulated, even if they claim "5V 2A", they may do "5V" and may do "2A", but not at the same time! Make sure you have the correct USB plug. In the photo below, the mini-USB (on the left) is the wrong one. It's thicker and looks like a trapezoid with its sides pinched in. The micro-USB (on the right) is the correct one. It is thinner and also looks like a trapezoid except it's sides are rounded outward.

Note: The micro-usb power connector can only make *Android* system startup, and two usb hosts near 18 Pins Pins Extended Interface are not available. In addition, the SATA is also not available. If you want to start all available systems(such as *Android, Lubuntu*), or want to test all USB HOSTs and SATA, you need to use DC power connector.

6. If you have a free 2.5 inch hard drive, you can put it into use on Orange Pi. Connect the SATA cable to the SATA port just on the right of HDMI. Remember to put the power cable with the 2 male 2.54mm headers into the SATA power. Then you can plug your hard drive into the other side of the SATA cable. Be careful with the connection of different color cables. (This step can be skipped)

If all goes well, the Orange Pi will boot in a few minutes. The screen will display the OS GUI(Graphical User Interface). The first boot of a new OS can sometimes take a long time. Be patient!

Subsequent boots are usually much quicker.

Step4: Shut down your Orange Pi

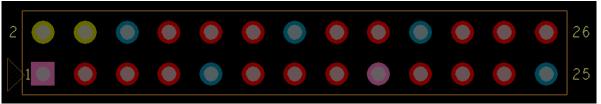
You can use the GUI to shut down the Orange Pi safely. Also you can run the command in the terminal:

sudo halt

or

sudo shutdown -h.

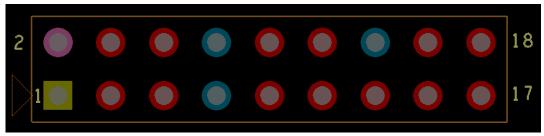

This will shut down the PI safely, (just use the power key to turn off might damage the TF-cards file system). After that you can press the power key for 5 seconds to turn it off.


If all is well, so you can use orange pi now.

GPIO specification

Orange Pi 26-pin GPIO

Orange Pi has a 26-pin GPIO header that matches that of the Model A and Model B Raspberry Pi. Following is the Orange Pi GPIO Pinout:



Orange-26pin

Orange Zopin		
CON3-P01	VCC-3V3	
CON3-P02	VCC-5V	
CON3-P03	TWI2-SDA	PB21
CON3-P04	VCC-5V	
CON3-P05	TWI2-SCK	PB20
CON3-P06	GND	
CON3-P07	PWM1	PI3
CON3-P08	UART3_TX	PH0
CON3-P09	GND	
CON3-P10	UART3_RX	PH1
CON3-P11	UART2_RX	PI19
CON3-P12	PH2	PH2
CON3-P13	UART2_TX	PI18
CON3-P14	GND	
CON3-P15	UART2_CTS	PI17
CON3-P16	CAN_TX	PH20
CON3-P17	VCC-3V3	
CON3-P18	CAN_RX	PH21
CON3-P19	SPIO_MOSI	PI12
CON3-P20	GND	
CON3-P21	SPIO_MISO	PI13
CON3-P22	UART2_RTS	PI16
CON3-P23	SPIO_CLK	PI11
CON3-P24	SPIO_CSO	PI10
CON3-P25	GND	
CON3-P26	SPIO_CS1	PI14

Orange Pi 18-pin GPIO

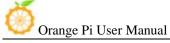
Orange Pi has a 18-pin GPIO header Following is the Orange Pi GPIO Pinout:

Orange-18pin

orange ropin		
CON4-P01	VCC-5V	
C0N4-P02	VCC-3V3	
CON4-P03	PH5	PH5
CON4-P04	UART7_RX	PI21
CON4-P05	РН3	РН3
CON4-P06	UART7_TX	PI20
CON4-P07	GND	
C0N4-P08	GND	
C0N4-P09	RESET#	
CON4-P10	LRADC1	
CON4-P11	ADC_Y2	
CON4-P12	LRADC0	
CON4-P13	ADC_Y1	
CON4-P14	GND	
CON4-P15	ADC_X2	
CON4-P16	UARTO-RX	
CON4-P17	ADC_X1	
CON4-P18	UARTO-TX	

LVDS specification

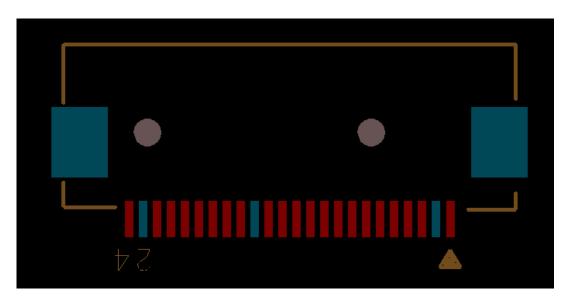
LVDS (LCD display interface)


The LVDS Connector is a 40-pin FPC connector which can connect external LCD panel (LVDS) and touch screen

(I2C) module as well. The pin definitions of this connector are shown as below. This is marked on the Orange Pi board as "CON2".

Orange-LCD

Orange-LCD		
CON2-P01	IPS0UT	
CON2-P02	TWI3-SDA	PI1
CON2-P03	IPSOUT	
CON2-P04	TWI3-SCK	PI0
CON2-P05	GND	
CON2-P06	LCD0-I00	PH7
CON2-P07	LCDIO-03	PH12
CON2-P08	LCD0-I01	PH8
CON2-P09	LCD0-D00	PD0
CON2-P10	PWM0	PB2
CON2-P11	LCD0-D01	PD1
CON2-P12	LCD0-I02	PH9
CON2-P13	LCD0-D02	PD2
CON2-P14	LCD0-DE	PD25
CON2-P15	LCD0-D03	PD3
CON2-P16	LCD0-VSYNC	PD27
CON2-P17	LCD0-D04	PD4
CON2-P18	LCD0-HSYNC	PD26
CON2-P19	LCD0-D05	PD5
CON2-P20	LCD0-CS	PH6
CON2-P21	LCD0-D06	PD6
CON2-P22	LCD0-CLK	PD24
CON2-P23	LCD0-D07	PD7
CON2-P24	GND	
CON2-P25	LCD0-D08	PD8
CON2-P26	LCD0-D23	PD23
CON2-P27	LCD0-D09	PD9
CON2-P28	LCD0-D22	PD22
CON2-P29	LCD0-D10	PD10
CON2-P30	LCD0-D21	PD21
CON2-P31	LCD0-D11	PD11
CON2-P32	LCD0-D20	PD20
CON2-P33	LCD0-D12	PD12
CON2-P34	LCD0-D19	PD19


CON2-P35	LCD0-D13	PD13
CON2-P36	LCD0-D18	PD18
CON2-P37	LCD0-D14	PD14
CON2-P38	LCD0-D17	PD17
CON2-P39	LCD0-D15	PD15
CON2-P40	LCD0-D16	PD16

CSI Camera Connector specification:

CSI Camera Connector

The CSI Camera Connector is a 24-pin FPC connector which can connect external camera module with proper

signal pin mappings. The pin definitions of the CSI interface are shown as below. This is marked on the Orange Pi board as "CON9".

Orange-CSI

CN9-P01	IPSOUT	
CN9-P02	GND	
CN9-P03	TWI1-SDA	PB19
CN9-P04	VCC-CSI	
CN9-P05	TWI1-SCK	PB18
CN9-P06	CSIO-RESET#	PH14
CN9-P07	CSI-VSYNC	PE3
CN9-P08	CSIO-STBY-EN	PH19
CN9-P09	CSI-HSYNC	PE2
CN9-P10	VDD1V5-CSI	
CN9-P11	VCC-CSI	

CN9-P12	CSI-D7	PE11
CN9-P13	CSI-MCLK	PE1
CN9-P14	CSI-D6	PE10
CN9-P15	GND	
CN9-P16	CSI-D5	PE9
CN9-P17	CSI-PCLK	PE0
CN9-P18	CSI-D4	PE8
CN9-P19	CSI-D0	PE4
CN9-P20	CSI-D3	PE7
CN9-P21	CSI-D1	PE5
CN9-P22	CSI-D2	PE6
CN9-P23	GND	
CN9-P24	AFVCC-CSI	